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It is sometimes said: animals do not talk because they lack the mental
abilities. And this means: “They do not think, and that is why they do
not talk.” But — they simply do not talk.

Ludwig Wittgenstein, Philosophical Investigations, 1953, § 25



1.11 Chomsky’s Generativist Program and the Cognitive
Revolution

Language Computation




1.11 Chomsky’s Generativist Program and the Cognitive

Revolution

Cognition

VS,
Behavior
(Chomsky, 1959)
Grammaticality Computation
VS, Language Vs
Inflection guag Logic

(Chomsky, 1955) (Chomsky, 1955)
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Noam Chomsky: The
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Chomsky Vs. LLMs




1.12 Chomsky Against Abstraction in Principle

‘Pick the properties that you like for a set of
processors. Pick the criteria you like for
success, whether in terms of performance
or structure or whatever. Consider the
class of all organisms, abstracting in
principle from the existing world, that satisfy
those things. And then you can ask
whether they have some property of
things in the material world. Do they
breathe”? Do they grow? Do they think? Do
they talk? Do they walk? Do they enjoy
themselves? Do they have moral rights?”

(Chomsky, 1992)



1.12 Chomsky Against Abstraction in Principle

“All of these questions are stupid. And the
reason they're stupid is because you've
departed from naturalism. Once you've
departed from naturalism, you have an
algorithm for constructing stupid
questions.”

(Chomsky, 1992)




1.12 Chomsky Against Abstraction in Principle

“There’s nothing wrong with principled
abstraction. In fact, one might think of large
areas of mathematics as that. But here we
have something new, principled
abstraction in an empirical discipline.”

‘| don't think we should cross that border,
because there’s no empirical claim. It is
just a question of how to extend the
metaphor.”

(Chomsky, 1992)
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1.1 The Cognitive Import of Computational Language Models
Is Not Unconditional

1.11 The contemporary connection between computational LMs
and cognition was set up by Chomsky

1.12 Yet, he denies any theoretical legitimacy to LLMs

1.13 The connection set up by Chomsky has very precise
epistemological conditions



1.2 The Trap

Structure
Input
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Theory
? Program
?
“Task”

Data J
(i1,01)
(i2, 0) Output



1.2

Stochastic Parrots Vs.

W
LLMs are not like us,
therefore they do not and can not have any relation to natural language.

W
LLMs have a relation to natural language,
therefore they are like us.

AGI



1.31 The Chomskyan Condition Is Not Necessary

o Inadequacy of distributional models o Limited expressive power of FSAs
(Chomsky, 1953) (Chomsky, 1956)

o The probability of a sentence is useless o Poverty of stimulus
(Chomsky, 1957, 1959) (Chomsky, 1959)

Language Computation




1.31 The Chomskyan Condition Is Not Necessary

o Inadequacy of distributional models o Limited expressive power of FSAs
(Chomsky, 1953) (Chomsky, 19506)
Inconclusive The relevance is unclear
o The probability of a sentence is useless o Poverty of stimulus
(Chomsky, 1957, 1959) (Chomsky, 1959)
Empirically challenged Assumes what is to be proved

Language Computation




1.32 Formal Content
(Gastaldi and Pellissier, 2021)

Form ¥ and E@a@@ Content
Kant, Hegel, Frege, Russian formalists, Saussure, Hielmslev, etc.

Formal Content: The dimension of content which finds its source in the internal
relations holding between the expressions of a language.




1.32 Formal Content
(Gastaldi and Pellissier, 2021)

Form ¥ and Eeém@ Content
Kant, Hegel, Frege, Russian formalists, Saussure, Hielmslev, etc.

Formal Content: The dimension of content which finds its source in the internal
relations holding between the expressions of a language.

o Characteristic Content: The content resulting from the inclusion of a unit in a class
of other units by which it accepts to be substituted in given contexts

o Syntactic Content: The content a unit receives as a result of the multiple
dependencies it can maintain with respect to other units in its context

o Informational Content: The content related to the non-uniform distribution of units
within those substitutability classes




1.32

Characteristic
Content

{cat, dog, spider,
gavagai}

Atomic Type

lllustration of Formal Contents

Syntactic
Content

“the gavagai is on the

mat”

Profunctor Nucleus

Informational
Content

{cat:0.059%,
dog:0.012%,
spider:0.009%
gavagai:0.000%}

Probability Distribution

(Gastaldi & Pellissier, 20271)



1.33 Language and Thought

...I supposed that all the objects (presentations) that had ever entered into my mind when
awake, had in them no more truth than the illusions of my dreams. But immediately upon this
I obsetrved that, whilst I thus wished to think that all was false, it was absolutely necessary that
I, who thus thought, should be something; And as I observed that this truth, I think, therefore
I am, was so certain and of such evidence that no ground of doubt, however extravagant,
could be alleged by the Sceptics capable of shaking it, I concluded that I might, without
scruple, accept it as the first principle of the philosophy of which I was in search.

Descartes, Meditations on First Philosophy (1641)



1.33 Language and Thought

But I was persuaded that there was nothing in all the world, that there was no heaven, no
earth, that there were no minds, nor any bodies: was I not then likewise persuaded that I did
not exist? Not at all; of a surety I myself did exist since I persuaded myself of something [or
merely because I thought of something]. But there is some deceiver or other, very powerful
and very cunning, who ever employs his ingenuity in deceiving me. Then without doubt I
exist also if he deceives me, and let him deceive me as much as he will, he can never cause me
to be nothing so long as I think that I am something. So that after having reflected well and
carefully examined all things, we must come to the definite conclusion that this proposition: 1
am, I exist, is necessarily true each time that I pronounce it, or that I mentally conceive it.

Descartes, Meditations on First Philosophy (1641)



1.33 Language Vs. Thought

...the philosopher has to say: “When I dissect the process expressed in the proposition 1
think,” I get a whole set of bold claims that are difficult, perhaps impossible, to establish, — for
instance, that I am the one who is thinking, that there must be something that is thinking in
the first place, that thinking is an activity and the effect of a being who is considered the cause,
that there is an ‘I, and finally, that it has already been determined what is meant by thinking, —
that I know what thinking is. [...]

Nietzsche, Beyond Good and Evil, §16 (1880)



1.33 Language Vs. Thought

...Because if I had not already made up my mind what thinking is, how could I tell whether
what had just happened was not perhaps ‘willing’ or ‘feeling’? Enough: this ‘I think’
presupposes that I compare my present state with other states that I have seen in myself, in
order to determine what it is: and because of this retrospective comparison with other types
of ‘knowing,’ this present state has absolutely no ‘immediate certainty’ for me.” — In place of
that “immediate certainty” which may, in this case, win the faith of the people, the
philosopher gets handed a whole assortment of metaphysical questions, genuinely probing
intellectual questions of conscience, such as: “Where do I get the concept of thinking from?
Why do I believe in causes and effects? What gives me the right to speak about an I, and, for
that matter, about an I as cause, and, finally, about an I as the cause of thoughts?” |...]

Nietzsche, Beyond Good and Evil, §16 (1886)



1.33 Language Vs. Thought

Now in order to cognize ourselves, there is required in addition to the act of thought, which
brings the manifold of every possible intuition to the unity of apperception, a determinate
mode of intuition, whereby this manifold is given; it therefore follows that although my
existence is not indeed appearance (still less mere illusion), the determination of my existence
can take place only in conformity with the form of inner sense, according to the special mode
in which the manifold, which I combine, is given in inner intuition. Accordingly I have no
cognition of myself as I am but merely as I appear to myself

Kant, Critique of Pure Reason (1781)



1.33 Language Vs. Thought

But, isn't thinking a kind of speaking? How is it possible for thinking to be engaged in a
struggle with speaking? Wouldn't that be a struggle in which thinking was at war with itself?
Doesn't this spell the end to the possibility of thinking?

Frege, Sources of Knowledge of Math. and the math. natural Sc. (1924-25)



1.33 Language Vs. Thought

It is sometimes said: animals do not talk because they lack the mental abilities. And this
means: “They do not think, and that is why they do not talk.” But — they simply do not talk.

Wittgenstein, Philosophical Investigations, 1953, § 25



1.33 Language Vs. Thought

The perennial man in the street believes that when he speaks he freely puts together whatever
elements have the meanings he intends; but he does so only by choosing members of those
classes that regularly occur together, and in the order in which these classes occur. |...] the
restricted distribution of classes persists for all their occurrences; the restrictions are not
disregarded arbitrarily, e.g. for semantic needs.

Harris, Distributional Structure, pp. 775-776, (1954).



1.3  The Lack of Cognitive Import Does Not Prevent LLMs to Be
Models of Language

1.31 The Chomskyan condition does not hold of necessity
1.32 Content can be an effect of form
1.33 The divorce between language and thought is not recent



1.1

1.2

1.3

LLMs Have No a Priori Cognitive Import

The cognitive import of computational language models is not
unconditional

The epistemological condition ensuring such a connection
does not hold for LLMs

The lack of cognitive import does not prevent LLMs to be
models of language



2.1

Empirical Saturnalia

The empirics of deep learning

(Circa 2020) the scaling era is here; deep networks are now just emergent things
we have created, that have to be studied scientifically like any other physical
phenomenon

It seemed like the best way for i to infl the field is to
develop the biology/physics (and let's be honest, more often pop psychology) of
existing large models

._And this.was.actually a very profltable areaor.a very sort of lucrative

Zico Kolter, Building Safe and Robust Al Systems, Keynote at ICLR 2025.
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2.3 Empirical Evaluation

P = xmAnAf A x.mf(nfx)

0: Af Az AmAnAf . f(nfe) N f e f(fe)(Nf e f(f(fx)))
1o Az fx 3
2 M x.f(fx) 3
3 A Az f(f(fz)) 3
4 Mfxx f(f(f(fx))) 3
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n: ANfx. f(...(fx)...) 3
N—_——
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Empirical Evaluation

P = xmAnAf A x.mf(nfx)
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2.4

The Empirical Study of LLMs Has No Epistemological
Grounds

The NLP field has embraced an empirical tum

But LLMs are just computable functions

There is no empirical way of knowing what a computable
function does

The only valid epistemological question is: What is this function
the implementation of?



3.2

Distributionalism and Contexts

“You shall know a word by the company it keeps!” (Firth, 1957)

“Words which are similar in meaning occur in similar contexts” (Rubenstein &
Goodenough 1965)

“Words with similar meanings will occur with similar neighbors if enough text
material is available” (Schitze & Pedersen 1995)

“A representation that captures much of how words are used in natural context will
capture much of what we mean by meaning” (Landauer & Dumais 1997)

“Words that occur in the same contexts tend to have similar meanings” (Pantel
2005)

“The degree of semantic similarity between two linguistic expressions A and B is a
function of the similarity of the linguistic contexts in which A and B can appear”
(Lenci, 2008)



3.3  Cognitive and Pragmatic Interpretations of Distributionalism

o Two versions of the Distributional Hypothesis (Lenci, 2008).

— Weak: Correlation between context and word meaning (Spence and Owens, 1990)
— Strong: Causality attributed to contextual distributions (Miller and Charles, 1991)

o Theory of (linguistic) meaning as “usage” (Wittgenstein) “the meaning of a word is
defined by the circumstances of its use” (Manning and Schitze, 1999)



3.3  Cognitive and Pragmatic Interpretations of Distributionalism

o Two versions of the Distributional Hypothesis (Lenci, 2008).

— Weak: Correlation between context and word meaning (Spence and Owens, 1990)
— Strong: Causality attributed to contextual distributions (Miller and Charles, 1991)

o Theory of (linguistic) meaning as “usage” (Wittgenstein) “the meaning of a word is
defined by the circumstances of its use” (Manning and Schitze, 1999)

o Context is assumed to be the restricted domain or scope within which entities of
the same nature can be presented together (‘co-occur”), in such a way that they
can be associated by a cognitive agent.



3.4 Distributionalism Vs. Context Co-Occurence

“Whereas LSA starts with a kind of co-occurrence, that of words with passages, the
analysis produces a result in which the fact that two words appear in the same
passage is not what makes them similar”(Landauer et al., 2007)

99% of the word-pairs for which LSA can establish a high similarity never appear
together in the same context (Dennis et al., 2003)

“radius of the sphere”

“‘a circle’s diameter” 0.55
‘music of the spheres” 0.03



3.4

a = your w = apartment
c=my X=house

y = chair

z = stool

your : house
my : apartment

Matrix and Analogy




3

Distributionalism Is the Best Theoretical Candidate to Study
LLMs

3.1 Al linguistic properties of an LLM come from distributions in
data

3.2 Distributionalism is often associated to contexts

3.3 Contexts are often understood cognitively or pragmatically

3.4 The global character of distributional properties challenges
cognitive and pragmatic interpretations

3.5 Distributionalism is not a thesis about cognition, but about the
structure of language
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4.21 Saussure’s Sign

“‘But here is the paradox: on the one hand the concept seems to be the counterpart of

the sound-image, and on the other hand the sign itself is in tumn the counterpart of the
other signs of language.

Language is a system of interdependent terms in which the value of each term results
solely from the simultaneous presence of the others, as in the diagram:”

(F. d. Saussure, 1959, p. 114)

Signifier ) f Signifier Signifier

ssen \_/‘ 4\/ \/



4,22 The Language (Langue) Hypothesis

“What is both the integral and concrete object of linguistics”? The question is especially
difficult [...]"

‘As | see it there is only one solution to all the foregoing difficulties: from the very outset
we must put both feet on the ground of language and use language [langue] as the
norm of all other manifestations of speech. Actually, among so many dualities,
language alone seems to lend itself to independent definition and provide a fulcrum that
satisfies the mind.”

(F. d. Saussure, 1959, p. 8-9)



4,22 The Language (Langue) Hypothesis

“‘But what is language [langue]? It is not to be confused with human speech [langage],
of which it is only a definite part, though certainly an essential one. It is both a social
product of the faculty of speech and a collection of necessary conventions that have
been adopted by a social body to permit individuals to exercise that faculty. Taken as
a whole, speech is many-sided and heterogeneous; straddling several areas
simultaneously —physical, physiological, and psychological—it belongs both to the
individual and to society; we cannot put it into any category of human facts, for we
cannot discover its unity.

Language (langue), on the contrary, is a self-contained whole and a principle of
classification. As soon as we give language first place among the facts of speech, we
introduce a natural order into a mass that lends itself to no other classification.”

(F. d. Saussure, 1959, p. 9)



4.23 Analogy

The nominative form of Latin honor, for instance, is analogical. Speakers first said
honds : hondsem, then through rhotacization of the s, honds . hondrem. After that, the
radical had a double form. This duality was eliminated by the new form honor, created
on the patter of érator . ératdrem, etc., through a process which subsequently will be
set up as a proportion:

oratorem : orator = honorem : x
X = honor

Thus analogy, to offset the diversifying action of a phonetic change (honds . hondrem),
again unified the forms and restored regularity (honor : honérem).

(F. d. Saussure, 1959, p. 161)



4.2 The Idea of Virtually Structured Distributions Is at the Heart
of Classical Structuralism

4,271 Saussure’s notion of sign is intrinsically distributional

4,22 “lLangue” as a virtual structure behind distribution is the very
object of Saussurean linguistics

4,23 Analogical operations local operators of such virtual a structure



4.3 From the Distributional to the Structuralist Hypothesis

Distributional Hypothesis

The content of linguistic units is determined
by their distribution in a corpus.

Structuralist Hypothesis

Linguistic content is the effect of a virtual
structure underlying linguistic practices
within .a community



4.3 The Structuralist Hypothesis

“A priori it would seem to be a generally valid thesis that for every process there is a
corresponding system, by which the process can be analyzed and described by
means of a limited number of premises. It must be assumed that any process, can be
analyzed into a limited number of elements recurring in various combinations. Then,
on the basis of this analysis, it should be possible to order these elements into classes
according to their possibilities of combination. And it should be further possible to set
up a general and exhaustive calculus of the possible combinations.”

(Hielmslev, 1953, p. 9)



4.3

The Structuralist Hypothesis

o Meaning is the effect of structure

o Distributional properties convey meaning only through the action of a latent
structure determining possible semantic values, and which is inseparable from the
principles of identification of the elementary units of language, since meaning is the
effect of discriminating operations performed through segmentation procedures of
which the units of language keep the trace

o Linguistic content is the effect of a virtual structure of classes and dependencies at
multiple levels underlying (and derivable from) the mass of things said or written in a
given language



4.3 The Structuralist Task

Structure
Input
Theory
? Program
?
“Task”

Data J
(i1,01)
(i2, 0) Output



4.1
4.2

4.3

Distributionalism Is a Corollary of Structuralism

The source of distributional properties is a virtual structure
The idea of virtually structured distributions is at the heart of
classical structuralism

\We need to move on from the distributional hypothesis to the
structuralist hypothesis



5.1 Formal Explainability

Epistemology of Machine Learning
Distributional Language Models

L

Tokenization
(Sennrich et al., 2016)

Epistemology of Machine Learning
Distributional Language Models

(https://tiktokenizer.vercel.app)
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5.1 Formal Explainability

Epistemology of Machine Learning
Distributional Language Models

L

Tokenization Embedding

(Sennrich et al., 2016) (Mikolov et al., 2013) (Vaswani et al., 2017)
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5.1

Embedding
(Mikolov et al., 2013)

Epistemology of Machine Learning

= . . learning
Distributional Language Models :

(https://tiktokenizer.vercel.app)

(https://projector.tensorflow.org)

Formal Explainability
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5.1 Formal Explainability

Structure

Epistemology of Machine Learning
f? Distributional Language Models

L

Embedding

Data




5.1 Formal Explainability

Structure

{_7/7071727"'78797:7
f? a,b,c,...,w,x,y,2,é}

1

Embedding

o

=
b oo,

b1

o m oo



5.2 Word2vec Explained
(Levy & Goldberg, 2014)

=% > #w,c)(logo(W-¢)+k-E.ywp,[logo(—w - cy)])

”UJEVwCEVc
o _ 5.8 = log (#weIDl) _
5g g =0 when @-¢ = log (£1210) —logk

o Word2vec performs an implicit, low-dimensional factorization of a
pointwise mutual information (pmi), word-context matrix.

» The Singular Value Decomposition (SVD) provides an exact solution to this
problem.



5.2 Example: Characters in Wikipedia

W={—,/,0,1,2,3,4,5,6,7,8,9,=,a,b,c,...,w,x,y,z,é}
C:XXX:{(_I_); (_r/)7 (_10)7---; (é,Z), (élé)}
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v
: ANEEEEEEEEEEE

Juan Luis Gastaldi | Rer



5.2

SVD of Wikipedia Character PMI Matrix

¥ v
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5.3

What to Conclude?




5.3 Embedding Structure

Structure

{_7/7071727"'78797:7
f? a,b,c,...,w,x,y,2,é}

1

Embedding
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5.3 Embedding Structure
Structure
{-,/,0,1,2,...,8,9,=,

-/ 0123456 7829 =abocdefghiijkllmnopagrsrstuvuwzxyzé ,
e L] ] a,b,c,...,w,x,y,z,é}
-l | || | | 1
s | |

A
Embedding
o
J L%
i =" p .."d ’gf
L w85 o
3 0ge% B
1 d:‘.ba ks oy % é; !
SVD R~
o 0



5.3

We Need Something More Formal

4 Why does this produce good word represen-
tations?

The distributional hypothesis states that words in similar contexts have sim-
ilar meanings. The objective above clearly tries to increase the quantity vy, - v,
for good word-context pairs, and decrease it for bad ones. Intuitively, this
means that words that share many contexts will be similar to each other (note
also that contexts sharing many words will also be similar to each other). This
is, however, very hand-wavy.

(Goldberg and Levy, 2014)



54 Embeddings as Functions Over Sets

X:{—,/,0,1,2,3,4,5,6,7,8,9,=,a,b,c,...,w,x,y,z,é}
Y:XXX:{(_I_)j (_r/)7 (_10)7---; (é,Z), (élé)}

M:XxY >R
(z,y) — pmi(z,y)

v
z ] EEEEE . II
< ANEEEEEEEEESE - EEEETEEEEES =E

Juan Luis Gastaldi | Remarks on the 1al Foundations of LMs 56/104



5.51 A Category Is Like a Set With Structure
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Data:
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5.51 A Category Is Like a Set With Structure

Definition (Category — Awodey, 2010 )

Data:
o Objects: A, B,C, ...
o Arrows: f, g, ...

o Composition: Given f : A — B and
g : B — C, there is given an arrow

gof:A—=C

o |dentity: Foreach A, thereis14: A — A
Laws:
o Uniti folg=f=1gof




5.51 A Category Is Like a Set With Structure

Definition (Category — Awodey, 2010 )

Data:
o Objects: A, B,C, ...
o Arrows: f, g, ...

o Composition: Given f : A — B and
g : B — C, there is given an arrow

gof:A—=C

o |dentity: Foreach A, thereis14: A — A
Laws:

o Unit: folg=f=1pof

o Associativity: fo(goh)=(fog)oh




5.52 A Functor Is a Map Between Categories

A ! B

Definition (Functor — Awodey, 2010) C gof 9

A functor o

F:C—D
between categories C and D is a mapping of objects F
to objects and arrows to arrows, in such a way that
F(B)
F(f)
D F(g)



5.52 A Functor Is a Map Between Categories

A ! B

Definition (Functor — Awodey, 2010) C gof g

A functor o

F:C—D
between categories C and D is a mapping of objects F
to objects and arrows to arrows, in such a way that
@ F(f: A— B)=F(f): F(A) - F(B) F(B)
F(f)
D F(g)



5.52 A Functor Is a Map Between Categories

A ! B
Definition (Functor — Awodey, 2010) C gof g
A functor o
F:C—D

between categories C and D is a mapping of objects F
to objects and arrows to arrows, in such a way that

@ F(f: A— B)=F(f): F(A) - F(B) F(B)

(B) F(1a)=1p F(f)

W D 20,



5.52 A Functor Is a Map Between Categories

A ! B
Definition (Functor — Awodey, 2010) C gof g
A functor o
F:C—D
between categories C and D is a mapping of objects F
to objects and arrows to arrows, in such a way that
@ F(f: A— B)=F(f): F(A) - F(B) F(B)

(b) F(1a) = 1p(a 5 F(f)
(©) F(gof)=F(g)oF(f)
— F(C



5.63

Product of Categories

Definition 2.15. In any category C, a product diagram for the objects A and
B consists of an object P and arrows

P1 P2

A P B
satisfying the following UMP:
Given any diagram of the form
A x 2 . p
there exists a unique u : X — P, making the diagram
X
1 )
iy
v
A P B
p1 p2

commute, that is, such that 1 = piu and z3 = pau.

(Awodey, 2010)



5.53 A Profunctor Is a Functor From the Product of Two
Arbitrary Categories to the Set Category

term; context; measure

) ! /

P % [) — Set



5.54 A Category Enriched Over V Is a Category Having a vey's
Worth Arrows Between Two Objects

hom(A, B)
C(A,B) ={feC|f:A— B}




5.54 A Category Enriched Over V Is a Category Having a vey’s
Worth Arrows Between Two Objects

hom(A, B)
C(A,B) ={feC|f:A— B}

C(A, B) € Set




5.54 A Category Enriched Over V Is a Category Having a vey's
Worth Arrows Between Two Objects

hom(A, B) Enrichment over V
C(A,B) ={feC|f:A— B}
C(4,B) eV,

where V is a “nice” (monoidal) category

C(A, B) € Set



5.55

A Functor Between the Enriched Categories D — C
Induces a Profunctor Is C°? x D — V

term; context; measure

) ! /

P % [) — Set



5.55

A Functor Between the Enriched Categories D — C
Induces a Profunctor Is C°? x D — V

term; context; measure

) | /

PxD—=V



5.55

A Functor Between the Enriched Categories D — C
Induces a Profunctor Is C°? x D — V

term; context; measure

) | /

P ) =2



5.55

A Functor Between the Enriched Categories D — C
Induces a Profunctor Is C°? x D — V

term; context; measure

) ! /

P x-SR



55 We Can Generalize Matrices to Enriched Profunctors
CPxD—>YVY

5.51 A category is like a set with structure

5.562 A functor is a map between categories

5.63 A profunctor is a functor from the product of two arbitrary
categories to the Set category

5.54 A category enriched over V is a category having a vey's worth
arrows between two objects

5.65 A functor between the enriched categories D — C induces a
profunctoris C? x D — V



The General Form of Distributions Is M: C? x D —= V

5.1 The (formal) key of neural LMs lies on embeddings

5.2 SVD over a PMI matrix provides the formal explanation for
words embeddings

5.3 This result has important conseqguences for explainability

5.4 A matrix can be understood as a functon M: X x Y - R

5.5 We can generalize matrices to enriched profunctors
:CPxD—YV



6.1 From Matrices to Distributional Operators

X:{—,/,0,1,2,3,4,5,6,7,8,9,=,a,b,c,...,w,x,y,z,é}
Y:XXX:{(_I_)j (_r/)7 (_10)7---; (é,Z), (élé)}

M:XxY >R
(z,y) — pmi(z,y)
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6.1 From Matrices to Distributional Operators

X:{—,/,0,1,2,3,4,5,6,7,8,9,=,a,b,c,...,w,x,y,z,é}
Y:XXX:{(_I_)j (_r/)7 (_10)7---7 (é,Z), (élé)}

M:XxY >R
(z,y) — pmi(z,y)

M,: X - RY
x = M(x,—)

»
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v
H ]
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Juan Luis Gastaldi | R




6.1 From Matrices to Distributional Operators

X = {:_7 /3 07 ]'J 27 3’ 47 57 67 77 8a 97 ==a517k)7 Cyer b, W, X, Y, 2, éé}
Y:XXX:{(—,—),(—,/),(—,O),...,(é,Z),(é,é)}

M:XxY =R
(x,y) = pmi(z,y)

M;: X - RY
x = M(x,—)
M,: Y - RY ]
y— M(—y) i
i
g [ ——— =i.
Juan Luis Gastaldi | Rel 65/104




0.1 From Matrices to Distributional Operators

X:{_’/70’172’374’576’7?8’97=7a7b7c7""w7X’Y7Z’é}
Y:XXX:{(_I_)’(_I/)7(_IO))"'7(élz)7(élé)}
x M Ry
M: XxY =R
(z,y) = pmi(z,y)

. Y
M,: X - R RX .
x = M(z,—) My
M, Y — R

Yy M(—,y)



0.1 From Matrices to Distributional Operators

X:{—,/,0,1,2,3,4,5,6,7,8,9,=,a,b,c,...,w,x,y,z,é}
Y:XXX:{(_I_); (_I/)7 (_,O),..., (élz)7 (éré)}

M, Y
M:XxY >R X——R
(z,y) = pmi(z,y) {
. Y
M,: X - R RX -
x> M(z,—) My
M, Y — R

Yy M(—,y)



0.1 From Matrices to Distributional Operators

X:{—,/,0,1,2,3,4,5,6,7,8,9,=,a,b,c,...,w,x,y,z,é}
Y:XXX:{(_I_); (_I/>7 (_,O),..., (élz)7 (éré)}

M, v
M: X xY =R X—R
(,y) = pmi(z,y) M
/'//// M
: Y s
M,: X 5 R o s ;
x> M(z,—) My
. X
M,:Y - R M*: RX 5 RY
y— M(—y) M,: RY - RX
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M. M*: RY - RY

From Matrices to Distributional Operators



6.1

M. M*: RY - RY
M*M,: RY - RY

From Matrices to Distributional Operators



6.2 Fixed Points of Distributional Operators as Structure

M. M*: RY - RY

* .Y Y
M*M,:RY SR o My
//W/
M* //’:/’/
{ui,..., upn} CRY { L
0 M
Y e *
{vi,...,on} CR S

X
{)‘17 7Amin( , )707 70} R M, Y



6.2 Fixed Points of Distributional Operators as Structure

M. M*: RY - RY
M*M,: RY - RY

{ug, ... upy}y CRY
{v1,...,v,} CRY
{A, - Awin (myn) - 05 -, 0}



6.2 Fixed Points of Distributional Operators as Structure

M. M*: RY - RY
M*M,: RY - RY

{ug, ... upy}y CRY
{v1,...,v,} CRY
{A, - Awin (myn) - 05 -, 0}

M. M *u,,; = )\i'u,,;
M*M*Ui = )\Z"UZ'

The u; and v; are (linear)
fixed points!



6.3 Embeddings as Functors Over Categories

X:{—,/,0,1,2,3,4,5,6,7,8,9,:,a,b,c,...,w,x,y,z,é}
Y:XXX:{(_I_)7 (_I/)7 (_Io)j"'j (élz)7 (élé)}

X L RY

7

M:X xY >R M

(,y) — pmi(z, y) M
g
RY «——— VY
M,: X - RY M,
x— M(x,—)
M*: RY - RY
My:Y - R* M,: RY = RX

Y= M(—,y)



6.3 Embeddings as Functors Over Categories
:{_’/705172’374’576’7?8’97=7a7b7c7"'7w7X’Y7Z’é}
:C:{_7/?07172737475’677’879’:7a’b7c""7w7X7Y7Z7é}

L Set )Op

Profunctor
op - Mr 3
M: x D — Set s st g
N s N Q
(e, ) > M(c, ) Lo -

Set ° —

Mc: — (Set )Op Ma
= M( ’_)
M St CP M*: Set™™ — (Set")oP
d: D — et

. op °P
o M(=, ) M.,.: (Set”)°P — Set



6.3

Embeddings as Functors Over Categories

Isbell Adjunction
M*: Set™” = (Set”)P: M,

—— (Set”)°P
: Set™”” — Set“™ - )
: < . S
: (Set”)P — (Set™)P : Mo 3
' = T M S



6.3 Embeddings as Functors Over Categories

Isbell Adjunction
M*: Set™” = (Set”)P: M,

Mo (SetP)er
: Set“”™ — Set“™ < S
(o) o g M ’/:’/ NS
: (Set”)°P — (Set”)°P 3 /,//:/M* 5
L
Fix( ):={/ € Set"”"| (NH=/} Y A —
My

Fix( ) = {y € (Set”)°P| (9) = g}

Nucleus of M = {(//,¢:)}, such that:
M*f =g, and Mg, =



6.3 Embeddings as Functors Over Categories

Isbell Adjunction
M*: Set™” = (Set”)P: M,

———— (Set”)°P
: Set“”™ — Set“™ < S
op op S M 3
: (Set”)°P — (Set”) 3 /::;/M* 5
,k,,
Fix( ):={/ € Set"”"| (NH=/} Y A —
Mgy

Fix( ) = {y € (Set”)°P| (9) = g}

Nucleus of M = {(//,¢:)}, such that:
M*f =g, and Mg, =

The nucleus is a category
complete and cocomplete



6.3 Embeddings as Functors Over Categories

Isbell Adjunction
M*: Set™” = (Set”)P: M,

C #} SetD)Op
MM Set™” — Set™” < s
* ) Dyop Dyop g M 3
MM : (Set”)P — (Set”) 2 /::::/,M* 5
-
Fix(M. M) :={f € Set™ M. M" (/) = [} St D
d

/
Fix(M*M.) == {g € (Set”)°P| M M. (9) = ¢}
Categories C and D
Nucleus of M = {(//, 9:)}, such that: can be enriched!

M*f/ = i and M*,(/i = }L/
E.g.
The nucleus is a category M*: 257 = (2P)op: M,
complete and cocomplete M RET s (RP)P: M,



6.1

6.2

6.3

The General Form of Structures Is M*: V¢ = VP M,

SVD looks for linear fixed points of the linear operators M* M.,
and M, M*

The set of fixed points reveals (limited) structural features
underlying the distributions

The nucleus of an enriched profunctor provides a generalization
of this setting



7.1

The Operator M, M* |Is a Covariance Matrix
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Eigenvectors as Fixed Points

M. M*u = Au
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Structural Features

Eigenvectors of M, M*:
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Binary Fixed Points
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Binary Fixed Points

7.2

MM f=f



7.2

MM f=f

“Eigensets”

Juan Luis Gastaldi | Remarks on the Distributional Foundations of LMs
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7.2

Partial Order Structure

Juan Luis Gastaldi | Remarks on the Distributional Foundations of LMs
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7.2

A<l

Juan Luis Gastaldi | Remarks on the Distributional Foundations of LMs

Dual Partial Order
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7.2

Paring of Partial Ordered Fixed Points

Juan Luis Gastaldi | Remarks on the Distributional Foundations of LMs 79/104
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Enriching Over R

7.2
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7.2

Structure

Enriching Over R




7.3 The Profunctor’s Nucleus Defines a System of Logical

Structure Types
S
/N
S/V V
o ‘C C\(S/V) e
|
S t h



7.3 Theory of Computational Types

Definition (Polar/Orthogonal - Girard, 2011)

[Gliven a binary operation, noted - ’
a,b~ (alb): Ax B — C and asubset P C C (the ‘pole’)
one can define the polar X+ ¢ B of a subset X C A

(resp. Y+ C AofasubsetY C B)by: (& : - e ’. ‘
s
L

(8
“

X+ :={ye B:Vz e X, (ab) € P}
L ={zeA:vyeY,(ab) € P}

o The map ‘polar’ is decreasing: v " o L
XCX' =X cxt ® ® [ 5 [
o The set Pol(A) C P(A) of polar sets, i.e., of the @) s
form Y- is closed under arbitrary intersections. In
particular, A is polar and XL is the smallest polar
set containing X.

o As aconsequence, X114+ = x L



7.3 Theory of Computational Types

Definition (Polar/Orthogonal - Girard, 2011) & D
[Gliven a binary operation, noted

a,b~ {a|b): Ax B— Candasubset P C C (the ‘pole’) D @& @ o @
one can define the polar X+ C B of asubset X C A . Y . . .
(resp. Y+ C AofasubsetY C B)by: ; L,

® o o -

X+ :={ye B:Vz e X, (ab) € P}

Yt :={xcA:VycY,(alp) € P}

S
o The map ‘polar’ is decreasing: S/V V
XcX =X+tcxt / \ ‘
o The set Pol(A) C P(A) of polar sets, i.e., of the C CQ\(S)NV) e
form Y1, is closed under arbitrary intersections. In ‘
particular, A is polar and XL is the smallest polar ’
set containing X . t h

WAL _ sed
o As a consequence, X =X (Gastaldi and Pellissier, 2021)
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Structure

Formal Explainability

Embedding
Nucleus and Types
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Structure

Formal Explainability

Tokenization
Renormalization

Embedding
Nucleus and Types

Attention
Tensor Product




7.5  The Resulting Objects Correspond to Classical Structuralist
Theoretical Constructs

Distributional Hypothesis

The content of linguistic units is determined
by their distribution in a corpus.

Structuralist Hypothesis

Linguistic content is the effect of a virtual
structure underlying linguistic practices
within .a community



7.5  The Resulting Objects Correspond to Classical Structuralist
Theoretical Constructs

CPxD = R Structure

Distributional Hypothesis

The content of linguistic units is determined
by their distribution in a corpus. ] 0

Theory D \U, 7777777777777777
“Task”
Structuralist Hypothesis :

Linguistic content is the effect of a virtual
structure underlying linguistic practices
within .a community

RCOP = (RD)op



7.5 Structuralist Semiology: Language (Langue) and Text

A Language [...] is the Paradigmatic of a AText [...] is the Syntagmatic of a
Denotative Semiotic whose Paradigms are Denotative Semiotic whose Chains are
Manifested by all Purports. Manifested by all Purports.

(Hielmslev, 1975, Df. 38) (Hielmslev, 1975, Df. 39)



7.5 Structuralist Semiology: Language (Langue) and Text

A Language [...] is the Paradigmatic of a
Denotative Semiotic whose Paradigms are
Manifested by all Purports.

(Hielmslev, 1975, Df. 38)

A Paradigmatic or Sign-System [...] is a
Semiotic System.

(Hielmslev, 1975, Df. 35)

AText [...] is the Syntagmatic of a
Denotative Semiotic whose Chains are
Manifested by all Purports.

(Hielmslev, 1975, Df. 39)

A Syntagmatic or Sign-Process [...] is a
Semiotic Process.

(Hielmslev, 1975, Df. 33)



7.5 Structuralist Semiology: Semiotic

A Semiotic [...] is a Hierarchy, any of whose
Components admits of a further Analysis into
Classes defined by mutual Relation, so that any of
these classes admits of an analysis into Derivates
defined by mutual Mutation.

(Hielmslev, 1975, Df. 24)



7.5 Structuralist Semiology: Semiotic

A Semiotic [...] is a Hierarchy, any of whose
Components admits of a further Analysis into
Classes defined by mutual Relation, so that any of
these classes admits of an analysis into Derivates
defined by mutual Mutation.

(Hielmslev, 1975, Df. 24)

Mutation [...] is a Function existing between

first-Degree Derivates of one and the same Class, a i i
function that has Relation to a function between |
other first-degree derivates of one and the same
class and belonging to the same Rank.

(Hielmslev, 1975, Df. 23)
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7.5

Syntagmatic and Text (Fixed Points/Types)

Juan Luis Gastaldi | Remarks on the Distributional Foundations of LMs 88/104
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7.5

Paradigmatic and “Langue (Nucleai/Types)

Juan Luis Gastaldi | Remarks on the Distributional Foundations of LMs 90/104



7.5 Structuralism and Formalism
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7.5

Diagram 3.

a b d e f g h i
a | aa ab ad af ag ah
b | ba bi
d | da de di
e eb ed eg
f fe
g g
h | ha hi
i id ih i
Diagram 1.
b d f g h a e i
f fa fe
h ha hi
8 ga ge gi
b ba be bi
d da de di
a| ab ad af ag ah aa
e| eb ed ef eg
i| ib id ig ih i

Structuralism and Formalism
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Diagram 2.
(SpangHanssen1959)



Structuralism and Formalism

Table 8.
Vowel X binary final cluster (cf. sect. 84).

ft g ks ds vno vl drl mp nk ng nd nt os Ik 1d It tk rd rt m S T iC
a 510 6 3 9 8 6 8 16 20 14 9 6 9 8 11 7 1 9 3 168 281 3 a
€ - - 3 1 3 2 2 1 - 4 7 5 6 - 3 5 -1 3 3 49 95 133 €
i 7 6 9 5 - 1 2 4 13 11 20 8 3 2 11 6 6 1 1 - 116 171 - i
o 3 2 2 5 4 2 1 11 2 3 2 - 4 13 3 6 9 10 4 77 120 - o
u 2 9 5 4 - - 6 12 8 4 12 3 2 4 8 4 4 - 2 - 89 143 - u
y - 2 - 2 - -1 2 4 7 6 2 - 1 6 6 3 2 1 - 45 56 - y
F: 4 11 1 - 4 4 2 2 911 8 1 3 2 11 4 6 6 6 4 99 145 - ®
[ 5 2 - 1 4 - - - -1 2 3 - - - 3 - 1 6 28 47 10 ]
aa - - - - -1 - - - 4 - - - - - - 2 -1 9 1 - aa

26 42 26 21 21 21 21 30 51 59 75 32 23 22 60 39 35 22 33 21 680 1069 46

(SpangHanssen1959)



This New Structuralist Formalism Provides New
Representational Tools for Explainability and Interpretability

7.1 Linear fixed points exhibit interpretable characteristics

7.2 Presheaf embeddings could replace vector embeddings

7.3 The profunctor's nucleus defines a system of logical types

7.4 The profunctor's nucleus could allow to study tokenization,
embedding, and attention in a unified formal way

7.5 The resulting objects correspond to classical structuralist
theoretical constructs



8.1 Language Models Are Culture Models

o A formal approach to data analysis can contribute to
inferring symbolic language models from linguistic data.

o Resulting models are, a priori, models of
the data.

o The cognitive content of such models is suspended,
and cannot be restored without raising the problem of
the data.

o The scale of the data for such models
exceeds the individual scale. Language Computation

o Cultural conditions of data production
become constitutive in the relation between cognitive
contents and language models.



Language Models Are Culture Models

8.1 Aformal approach to data analysis can contribute to inferring
symbolic language models from linguistic data

8.2 Resulting models are, a priori, models of the data

8.3 The cognitive content of such models is suspended, and
cannot be restored without raising the problem of the data

8.4 The scale of the data for such models exceeds the individual
scale

8.5 Cultural conditions of data production become constitutive in
the relation between cognitive contents and language models
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Main Argument

LLMs have no a priori cognitive import

The empirical study of LLMs has no epistemological grounds
Distributionalism is the best theoretical candidate to study LLMs
Distributionalism is a corollary of structuralism

The general form of distributions is M: C? x D — V

The general form of structures is M*: V¢ < VP M,

This new structuralist formalism provides new representational
tools for explainability and interpretability

Language models are culture models
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1.2
1.3
1.31

1.32
1.33

Full Argument |

LLMs have no a priori cognitive import

The cognitive import of computational language models is not
unconditional

The contemporary connection between computational LMs and cognition
was set up by Chomsky

Yet, he denies any theoretical legitimacy to LLMs

The connection set up by Chomsky has very precise epistemological
conditions

The epistemological condition ensuring such a connection does not hold
for LLMs

The lack of cognitive import does not prevent LLMSs to be models of
language

The Chomskyan condition does not hold of necessity

Content can be an effect of form

The divorce between language and thought is not recent



2.1
2.2
2.3
2.4

3.1
3.2
3.3
3.4

3.5

Full Argument |l

The empirical study of LLMs has no epistemological grounds

The NLP field has embraced an empirical turmn

But LLMs are just computable functions

There is no empirical way of knowing what a computable function does

The only valid epistemological guestion is: VWhat is this function the
implementation of?

Distributionalism is the best theoretical candidate to study LLMs
All'linguistic properties of an LLM come from distributions in data
Distributionalism is often associated to contexts

Contexts are often understood cognitively or pragmatically

The global character of distributional properties challenges cognitive and
pragmatic interpretations

Distributionalism is not a thesis about cognition, but about the structure of
language



4.1
4.2

4.21
4.22

4.23
4.3

0.1
5.2

Full Argument I

Distributionalism is a corollary of structuralism
The source of distributional properties is a virtual structure

The idea of virtually structured distributions is at the heart of classical
structuralism

Saussure’s notion of sign is intrinsically distributional

‘Langue” as a virtual structure behind distribution is the very object of
Saussurean linguistics

Analogical operations local operators of such virtual a structure

\We need to move on from the distributional hypothesis to the structuralist
hypothesis

The general form of distributionsis M: C? x D — V

The (formal) key of neural LMs lies on embeddings

SVD over a PMI matrix provides the formal explanation for words
embeddings



5.3
5.4
5.5
0.51
5.62
5.63

0.54

5.55

6.1
6.2

Full Argument IV
This result has important consequences for explainability
A matrix can be understood as a function M: X x Y — R
\We can generalize matrices to enriched profunctors : C°P x D — V
A category is like a set with structure
A functor is a map between categories
A profunctor is a functor from the product of two arbitrary categories to
the Set category
A category enriched over V is a category having a vey's worth arrows
between two objects
A functor between the enriched categories D — C induces a profunctor is
CPxD—V
The general form of structures is M*: V¢ <= VP M,
SVD looks for linear fixed points of the linear operators M* M, and M, M*

The set of fixed points reveals (limited) structural features underlying the
distributions



6.3

7.
7.2
7.3
7.4

7.5

8.2

Full Argument V
The nucleus of an enriched profunctor provides a generalization of this
setting
This new structuralist formalism provides new representational tools for
explainability and interpretability
Linear fixed points exhibit interpretable characteristics
Presheaf embeddings could replace vector embeddings
The profunctor's nucleus defines a system of logical types
The profunctor’'s nucleus could allow to study tokenization, embedding,
and attention in a unified formal way

The resulting objects correspond to classical structuralist theoretical
constructs

Language models are culture models

A formal approach to data analysis can contribute to inferring symbolic
language models from linguistic data
Resulting models are, a priori, models of the data



8.3

8.4
8.5

Full Argument VI

The cognitive content of such models is suspended, and cannot be
restored without raising the problem of the data

The scale of the data for such models exceeds the individual scale

Cultural conditions of data production become constitutive in the relation
between cognitive contents and language models
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Main Argument

LLMs have no a priori cognitive import

The empirical study of LLMs has no epistemological grounds
Distributionalism is the best theoretical candidate to study LLMs
Distributionalism is a corollary of structuralism

The general form of distributionsis M: C? x D — VY

The general form of structures is M*: V¢ < VP M,

This new structuralist formalism provides new representational
tools for explainability and interpretability

Language models are culture models



