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It is sometimes said: animals do not talk because they lack the mental

abilities. And this means: “They do not think, and that is why they do

not talk.” But — they simply do not talk.

Ludwig Wittgenstein, Philosophical Investigations, 1953, § 25
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1.11 Chomsky’s Generativist Program and the Cognitive

Revolution
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1.12 Chomsky Vs. LLMs
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1.12 Chomsky Against Abstraction in Principle

“Pick the properties that you like for a set of

processors. Pick the criteria you like for

success, whether in terms of performance

or structure or whatever. Consider the

class of all organisms, abstracting in

principle from the existing world, that satisfy

those things. And then you can ask

whether they have some property of

things in the material world. Do they

breathe? Do they grow? Do they think? Do

they talk? Do they walk? Do they enjoy

themselves? Do they have moral rights?”

(Chomsky, 1992)
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1.12 Chomsky Against Abstraction in Principle

“All of these questions are stupid. And the

reason they’re stupid is because you’ve

departed from naturalism. Once you’ve

departed from naturalism, you have an

algorithm for constructing stupid

questions.”

(Chomsky, 1992)
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1.12 Chomsky Against Abstraction in Principle

“There’s nothing wrong with principled

abstraction. In fact, one might think of large

areas of mathematics as that. But here we

have something new, principled

abstraction in an empirical discipline.”

“I don’t think we should cross that border,

because there’s no empirical claim. It is

just a question of how to extend the

metaphor.”

(Chomsky, 1992)
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1.13 The Condition of Chomsky’s Cognitive Foundations

Cognition

Language Computation
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1.13 The Trap
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1.13 The Trap

Program
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1.13 The Trap
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1.13 The Trap

Program
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1.1 The Cognitive Import of Computational Language Models

Is Not Unconditional

1.11 The contemporary connection between computational LMs

and cognition was set up by Chomsky

1.12 Yet, he denies any theoretical legitimacy to LLMs

1.13 The connection set up by Chomsky has very precise

epistemological conditions



1.2 The Trap

Program
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1.2 Stochastic Parrots Vs. AGI

📉🦜

LLMs are not like us,

therefore they do not and can not have any relation to natural language.

🤖🧠

LLMs have a relation to natural language,

therefore they are like us.
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1.31 The Chomskyan Condition Is Not Necessary

� Inadequacy of distributional models

(Chomsky, 1953)

Inconclusive

� The probability of a sentence is useless

(Chomsky, 1957, 1959)

Empirically challenged

� Limited expressive power of FSAs

(Chomsky, 1956)

The relevance is unclear

� Poverty of stimulus

(Chomsky, 1959)

Assumes what is to be proved

Language Computation

?
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1.32 Formal Content

(Gastaldi and Pellissier, 2021)

Form vs. and Meaning Content

Kant, Hegel, Frege, Russian formalists, Saussure, Hjelmslev, etc.

Formal Content: The dimension of content which finds its source in the internal

relations holding between the expressions of a language.

� Characteristic Content: The content resulting from the inclusion of a unit in a class

of other units by which it accepts to be substituted in given contexts

� Syntactic Content: The content a unit receives as a result of the multiple

dependencies it can maintain with respect to other units in its context

� Informational Content: The content related to the non-uniform distribution of units

within those substitutability classes
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1.32 Illustration of Formal Contents
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1.33 Language and Thought

...I supposed that all the objects (presentations) that had ever entered into my mind when

awake, had in them no more truth than the illusions of my dreams. But immediately upon this

I observed that, whilst I thus wished to think that all was false, it was absolutely necessary that

I, who thus thought, should be something; And as I observed that this truth, I think, therefore

I am, was so certain and of such evidence that no ground of doubt, however extravagant,

could be alleged by the Sceptics capable of shaking it, I concluded that I might, without

scruple, accept it as the first principle of the philosophy of which I was in search.

Descartes, Meditations on First Philosophy (1641)
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1.33 Language and Thought

But I was persuaded that there was nothing in all the world, that there was no heaven, no

earth, that there were no minds, nor any bodies: was I not then likewise persuaded that I did

not exist? Not at all; of a surety I myself did exist since I persuaded myself of something [or

merely because I thought of something]. But there is some deceiver or other, very powerful

and very cunning, who ever employs his ingenuity in deceiving me. Then without doubt I

exist also if he deceives me, and let him deceive me as much as he will, he can never cause me

to be nothing so long as I think that I am something. So that after having reflected well and

carefully examined all things, we must come to the definite conclusion that this proposition: I

am, I exist, is necessarily true each time that I pronounce it, or that I mentally conceive it.

Descartes, Meditations on First Philosophy (1641)
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1.33 Language Vs. Thought

…the philosopher has to say: “When I dissect the process expressed in the proposition ‘I

think,’ I get a whole set of bold claims that are difficult, perhaps impossible, to establish, – for

instance, that I am the one who is thinking, that there must be something that is thinking in

the first place, that thinking is an activity and the effect of a being who is considered the cause,

that there is an ‘I,’ and finally, that it has already been determined what is meant by thinking, –

that I know what thinking is. [...]

Nietzsche, Beyond Good and Evil, §16 (1886)
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1.33 Language Vs. Thought

…Because if I had not already made up my mind what thinking is, how could I tell whether

what had just happened was not perhaps ‘willing’ or ‘feeling’? Enough: this ‘I think’

presupposes that I compare my present state with other states that I have seen in myself, in

order to determine what it is: and because of this retrospective comparison with other types

of ‘knowing,’ this present state has absolutely no ‘immediate certainty’ for me.” – In place of

that “immediate certainty” which may, in this case, win the faith of the people, the

philosopher gets handed a whole assortment of metaphysical questions, genuinely probing

intellectual questions of conscience, such as: “Where do I get the concept of thinking from?

Why do I believe in causes and effects? What gives me the right to speak about an I, and, for

that matter, about an I as cause, and, finally, about an I as the cause of thoughts?” [...]

Nietzsche, Beyond Good and Evil, §16 (1886)
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1.33 Language Vs. Thought

Now in order to cognize ourselves, there is required in addition to the act of thought, which

brings the manifold of every possible intuition to the unity of apperception, a determinate

mode of intuition, whereby this manifold is given; it therefore follows that although my

existence is not indeed appearance (still less mere illusion), the determination of my existence

can take place only in conformity with the form of inner sense, according to the special mode

in which the manifold, which I combine, is given in inner intuition. Accordingly I have no

cognition of myself as I am but merely as I appear to myself

Kant, Critique of Pure Reason (1781)
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1.33 Language Vs. Thought

But, isn't thinking a kind of speaking? How is it possible for thinking to be engaged in a

struggle with speaking? Wouldn't that be a struggle in which thinking was at war with itself?

Doesn't this spell the end to the possibility of thinking?

Frege, Sources of Knowledge of Math. and the math. natural Sc. (1924-25)
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1.33 Language Vs. Thought

It is sometimes said: animals do not talk because they lack the mental abilities. And this

means: “They do not think, and that is why they do not talk.” But — they simply do not talk.

Wittgenstein, Philosophical Investigations, 1953, § 25
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1.33 Language Vs. Thought

The perennial man in the street believes that when he speaks he freely puts together whatever

elements have the meanings he intends; but he does so only by choosing members of those

classes that regularly occur together, and in the order in which these classes occur. [...] the

restricted distribution of classes persists for all their occurrences; the restrictions are not

disregarded arbitrarily, e.g. for semantic needs.

Harris, Distributional Structure, pp. 775-776, (1954).
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1.3 The Lack of Cognitive Import Does Not Prevent LLMs to Be

Models of Language

1.31 The Chomskyan condition does not hold of necessity

1.32 Content can be an effect of form

1.33 The divorce between language and thought is not recent



1 LLMs Have No a Priori Cognitive Import

1.1 The cognitive import of computational language models is not

unconditional

1.2 The epistemological condition ensuring such a connection

does not hold for LLMs

1.3 The lack of cognitive import does not prevent LLMs to be

models of language
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2.2 LLMs Are Computable Functions

Neural LM

❓
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2.2 λ-Abstraction and β-Reduction in λ-Calculus
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2.3 Empirical Evaluation

P := λm.λn.λf.λx.mf(nfx)

P ′ := λr.λs.λf.λx.f(f(f(f(fx))))

0: λf.λx.x

1: λf.λx.fx

2: λf.λx.f(fx)
3: λf.λx.f(f(fx))
4: λf.λx.f(f(f(fx)))
5: λf.λx.f(f(f(f(fx))))

. . .

n: λf.λx. f(. . . (f︸ ︷︷ ︸
n times

x) . . .)

λm.λn.λf.λx.mf(nfx)(λf.λx.f(fx))(λf.λx.f(f(fx)))

 
 
 
 
 
 
 

λf.λx.f(f(f(f(fx))))
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2.3 Empirical Interpretability
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2.3 Empirical Interpretability
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. . .

n: λf.λx. f(. . . (f︸ ︷︷ ︸
n times

x) . . .)

λm.λn.λf.λx.mf(nfx)(λf.λx.f(fx))(λf.λx.f(f(fx)))
λm.λn.λf.λx.mf(nfx)(λg.λy.g(gy))(λh.λz.h(h(hz)))

λn.λf.λx.(λg.λy.g(gy))f(nfx)(λh.λz.h(h(hz)))
λn.λf.λx.(λg.λy.g(gy))f(nfx)(λh.λz.h(h(hz)))

λf.λx.(λg.λy.g(gy))f((λh.λz.h(h(hz)))fx)
λf.λx.(λy.f(fy))((λh.λz.h(h(hz)))fx)

λf.λx.(λy.f(fy))((λz.f(f(fz)))x)
λf.λx.(λy.f(fy))(f(f(fx)))

λf.λx.f(f(f(f(fx))))
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2.3 Empirical Interpretability

P := λm.λn.λf.λx.mf(nfx)
P ′′ :=λRóƒÄÒêÑ5È|Àxñ=∞ù�ÿmWf286ëy’SÒú>v&ìÂ�¬2�óÉ7öç∞{ã>2flB°µG#À9ÇU

∞btYBô¥�Ù ë‰3;5�å[l–èuô¨Ü˚7–Ù.λ:^4mÓØ¥´è—+ÌsÖ‚$+gï„B™÷o–#ïŸê�Ûv
–gÓÿ⁄ëiijO‡Œfi•J1«€ø¸Ï hãêt‡æY$ˆ6�FïW»RÙKg¢¨.λ‡d¯…�D2÷˛ò˚xêÈy.�Ó”¢b
Bé£NÈ1Ê‡⁄Û9Ñµ–/JYÇõË9ÿÀÈ.λÁÍ ÀˆöÇ‚»ƒq∞±îˇB5Ì>O˜g™“6Ωe“æëC/ã… Ö
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2.4 Implicit Structure
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2 The Empirical Study of LLMs Has No Epistemological

Grounds

2.1 The NLP field has embraced an empirical turn

2.2 But LLMs are just computable functions

2.3 There is no empirical way of knowing what a computable

function does

2.4 The only valid epistemological question is: What is this function

the implementation of?



3.2 Distributionalism and Contexts

� “You shall know a word by the company it keeps!” (Firth, 1957)

� “Words which are similar in meaning occur in similar contexts” (Rubenstein &

Goodenough 1965)

� “Words with similar meanings will occur with similar neighbors if enough text

material is available” (Schütze & Pedersen 1995)

� “A representation that captures much of how words are used in natural context will

capture much of what we mean by meaning” (Landauer & Dumais 1997)

� “Words that occur in the same contexts tend to have similar meanings” (Pantel

2005)

� “The degree of semantic similarity between two linguistic expressions A and B is a

function of the similarity of the linguistic contexts in which A and B can appear”

(Lenci, 2008)
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3.3 Cognitive and Pragmatic Interpretations of Distributionalism

� Two versions of the Distributional Hypothesis (Lenci, 2008):

— Weak: Correlation between context and word meaning (Spence and Owens, 1990)

— Strong: Causality attributed to contextual distributions (Miller and Charles, 1991)

� Theory of (linguistic) meaning as “usage” (Wittgenstein) “the meaning of a word is

defined by the circumstances of its use” (Manning and Schütze, 1999)

� Context is assumed to be the restricted domain or scope within which entities of

the same nature can be presented together (“co-occur”), in such a way that they

can be associated by a cognitive agent.
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3.4 Distributionalism Vs. Context Co-Occurence

“Whereas LSA starts with a kind of co-occurrence, that of words with passages, the

analysis produces a result in which the fact that two words appear in the same

passage is not what makes them similar”(Landauer et al., 2007)

99% of the word-pairs for which LSA can establish a high similarity never appear

together in the same context (Dennis et al., 2003)

“radius of the sphere”

“a circle’s diameter” 0.55

“music of the spheres” 0.03
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3.4 Matrix and Analogy
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3 Distributionalism Is the Best Theoretical Candidate to Study

LLMs

3.1 All linguistic properties of an LLM come from distributions in

data

3.2 Distributionalism is often associated to contexts

3.3 Contexts are often understood cognitively or pragmatically

3.4 The global character of distributional properties challenges

cognitive and pragmatic interpretations

3.5 Distributionalism is not a thesis about cognition, but about the

structure of language



4.21 Saussure’s Sign
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4.21 Saussure’s Sign

“But here is the paradox: on the one hand the concept seems to be the counterpart of

the sound-image, and on the other hand the sign itself is in turn the counterpart of the

other signs of language.

Language is a system of interdependent terms in which the value of each term results

solely from the simultaneous presence of the others, as in the diagram:”

(F. d. Saussure, 1959, p. 114)
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4.22 The Language (Langue) Hypothesis

“What is both the integral and concrete object of linguistics? The question is especially

difficult [...]”

“As I see it there is only one solution to all the foregoing difficulties: from the very outset

we must put both feet on the ground of language and use language [langue] as the

norm of all other manifestations of speech. Actually, among so many dualities,

language alone seems to lend itself to independent definition and provide a fulcrum that

satisfies the mind.”

(F. d. Saussure, 1959, p. 8-9)
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4.22 The Language (Langue) Hypothesis

“But what is language [langue]? It is not to be confused with human speech [langage],

of which it is only a definite part, though certainly an essential one. It is both a social

product of the faculty of speech and a collection of necessary conventions that have

been adopted by a social body to permit individuals to exercise that faculty. Taken as

a whole, speech is many-sided and heterogeneous; straddling several areas

simultaneously—physical, physiological, and psychological—it belongs both to the

individual and to society; we cannot put it into any category of human facts, for we

cannot discover its unity.

Language (langue), on the contrary, is a self-contained whole and a principle of

classification. As soon as we give language first place among the facts of speech, we

introduce a natural order into a mass that lends itself to no other classification.”

(F. d. Saussure, 1959, p. 9)
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4.23 Analogy

The nominative form of Latin honor, for instance, is analogical. Speakers first said

honōs : honōsem, then through rhotacization of the s, honōs : honōrem. After that, the

radical had a double form. This duality was eliminated by the new form honor, created

on the pattern of ōrātor : ōrātōrem, etc., through a process which subsequently will be

set up as a proportion:

ōrātōrem : ōrātor = honōrem : x

x = honor

Thus analogy, to offset the diversifying action of a phonetic change (honōs : honōrem),

again unified the forms and restored regularity (honor : honōrem).

(F. d. Saussure, 1959, p. 161)
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4.2 The Idea of Virtually Structured Distributions Is at the Heart

of Classical Structuralism

4.21 Saussure’s notion of sign is intrinsically distributional

4.22 “Langue” as a virtual structure behind distribution is the very

object of Saussurean linguistics

4.23 Analogical operations local operators of such virtual a structure



4.3 From the Distributional to the Structuralist Hypothesis

Structure

Theory

“Task”

Distributional Hypothesis

The content of linguistic units is determined

by their distribution in a corpus.

Structuralist Hypothesis

Linguistic content is the effect of a virtual

structure underlying linguistic practices

within a community

Cop × D → R̄

R̄Cop
� (R̄D)op

⇓
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4.3 The Structuralist Hypothesis

“A priori it would seem to be a generally valid thesis that for every process there is a

corresponding system, by which the process can be analyzed and described by

means of a limited number of premises. It must be assumed that any process, can be

analyzed into a limited number of elements recurring in various combinations. Then,

on the basis of this analysis, it should be possible to order these elements into classes

according to their possibilities of combination. And it should be further possible to set

up a general and exhaustive calculus of the possible combinations.”

(Hjelmslev, 1953, p. 9)
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4.3 The Structuralist Hypothesis

� Meaning is the effect of structure

� Distributional properties convey meaning only through the action of a latent

structure determining possible semantic values, and which is inseparable from the

principles of identification of the elementary units of language, since meaning is the

effect of discriminating operations performed through segmentation procedures of

which the units of language keep the trace

� Linguistic content is the effect of a virtual structure of classes and dependencies at

multiple levels underlying (and derivable from) the mass of things said or written in a

given language
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4.3 The Structuralist Task
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4 Distributionalism Is a Corollary of Structuralism

4.1 The source of distributional properties is a virtual structure

4.2 The idea of virtually structured distributions is at the heart of

classical structuralism

4.3 We need to move on from the distributional hypothesis to the

structuralist hypothesis



5.1 Formal Explainability

Tokenization

(Sennrich et al., 2016)

Epistemology of Machine Learning

Distributional Language Models

(https://tiktokenizer.vercel.app)

Embedding

(Mikolov et al., 2013)

Embedding Projector
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5.2 Word2vec Explained
(Levy & Goldberg, 2014)

` = ∑
w∈Vw

∑
c∈Vc

#(w, c)( log σ(~w · ~c) + k · EcN ∼PD
[log σ(−~w · ~cN)])

∂`
∂(~w · ~c) = 0 when ~w · ~c = log

(
#(w,c)·|D|
#(w)·#(c)

)
− log k

� Word2vec performs an implicit, low-dimensional factorization of a

pointwise mutual information (pmi), word-context matrix.

� The Singular Value Decomposition (SVD) provides an exact solution to this

problem.
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5.2 Example: Characters in Wikipedia

W = {-,/,0,1,2,3,4,5,6,7,8,9,=,a,b,c, . . . ,w,x,y,z,é}
C = X × X = {(-,-),(-,/),(-,0), . . . ,(é,z),(é,é)}

Mwc = pmi(w, c)

= log p(w, c)
p(w)p(c)
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5.2 SVD of Wikipedia Character PMI Matrix
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5.2 Truncate

U × Σ

D
1

D
2

D
3

D
4

D
5

D
6

D
7

D
8

D
9

D
1
0

D
1
1

D
1
2

D
1
3

D
1
4

D
1
5

D
1
6

D
1
7

D
1
8

D
1
9

D
2
0

D
2
1

D
2
2

D
2
3

D
2
4

D
2
5

D
2
6

D
2
7

D
2
8

D
2
9

D
3
0

D
3
1

D
3
2

D
3
3

D
3
4

D
3
5

D
3
6

D
3
7

D
3
8

D
3
9

é
z
y
x
w
v
u
t
s
r
q
p
o
n
m
l
k
j
i
h
g
f
e
d
c
b
a
=
9
8
7
6
5
4
3
2
1
0
/
-

Juan Luis Gastaldi | Remarks on the Distributional Foundations of LMs 51/104
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5.2 Plot

Û × Σ̂
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5.3 What to Conclude?
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5.3 Embedding Structure
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5.3 We Need Something More Formal

Effect of subsampling and rare-word pruning word2vec has two additional
parameters for discarding some of the input words: words appearing less
than min-count times are not considered as either words or contexts,
an in addition frequent words (as defined by the sample parameter) are
down-sampled. Importantly, these words are removed from the text before
generating the contexts. This has the effect of increasing the effective win-

dow size for certain words. According to Mikolov et al. [2], sub-sampling
of frequent words improves the quality of the resulting embedding on some
benchmarks. The original motivation for sub-sampling was that frequent
words are less informative. Here we see another explanation for its effec-
tiveness: the effective window size grows, including context-words which
are both content-full and linearly far away from the focus word, thus mak-
ing the similarities more topical.

4 Why does this produce good word represen-

tations?

Good question. We don’t really know.
The distributional hypothesis states that words in similar contexts have sim-

ilar meanings. The objective above clearly tries to increase the quantity vw · vc
for good word-context pairs, and decrease it for bad ones. Intuitively, this
means that words that share many contexts will be similar to each other (note
also that contexts sharing many words will also be similar to each other). This
is, however, very hand-wavy.

Can we make this intuition more precise? We’d really like to see something
more formal.
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5.4 Embeddings as Functions Over Sets

X = {-,/,0,1,2,3,4,5,6,7,8,9,=,a,b,c, . . . ,w,x,y,z,é}
Y = X × X = {(-,-),(-,/),(-,0), . . . ,(é,z),(é,é)}

M : X × Y → R
(x, y) 7→ pmi(x, y)

Mx : X → RY

x 7→ M(x, −)

My : Y → RX

y 7→ M(−, y)
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5.51 A Category Is Like a Set With Structure

G H

A B

E C D

I J

1A1A fff

g◦fg◦fg◦f
h◦g1B1Bggg

h1C

Definition (Category – Awodey, 2010 )

Data:

� Objects: A, B, C, . . .

� Arrows: f, g, . . .

� Composition: Given f : A → B and

g : B → C, there is given an arrow

g ◦ f : A → C

� Identity: For each A, there is 1A : A → A

Laws:

� Unit: f ◦ 1A = f = 1B ◦ f

� Associativity: f ◦ (g ◦ h) = (f ◦ g) ◦ h
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g : B → C, there is given an arrow

g ◦ f : A → C

� Identity: For each A, there is 1A : A → A

Laws:

� Unit: f ◦ 1A = f = 1B ◦ f

� Associativity: f ◦ (g ◦ h) = (f ◦ g) ◦ h
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5.52 A Functor Is a Map Between Categories

Definition (Functor – Awodey, 2010 )

A functor

F : C → D

between categories C and D is a mapping of objects

to objects and arrows to arrows, in such a way that

(a) F (f : A → B) = F (f) : F (A) → F (B)
(b) F (1A) = 1F (A)

(c) F (g ◦ f) = F (g) ◦ F (f)
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5.53 Product of Categories

(Awodey, 2010)
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5.53 A Profunctor Is a Functor From the Product of Two

Arbitrary Categories to the Set Category

Cop × D → SetCop × D → VCop × D → 2Cop × D → R̄

termi contexti measure

⇓
M∗ : 2Cop

� (2D)op : M∗

Structure

?
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5.54 A Category Enriched Over V Is a Category Having a v∈V ’s

Worth Arrows Between Two Objects

hom(A, B)
C(A, B) = {f ∈ C|f : A → B}

C(A, B) ∈ Set

G H

A B

E C D

I J
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5.54 A Category Enriched Over V Is a Category Having a v∈V ’s

Worth Arrows Between Two Objects

hom(A, B)
C(A, B) = {f ∈ C|f : A → B}

C(A, B) ∈ Set

G H

A B

E C D

I J
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5.54 A Category Enriched Over V Is a Category Having a v∈V ’s

Worth Arrows Between Two Objects

hom(A, B)
C(A, B) = {f ∈ C|f : A → B}

C(A, B) ∈ Set

Enrichment over V

C(A, B) ∈ V,
where V is a “nice” (monoidal) category
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5.55 A Functor Between the Enriched Categories D → C
Induces a Profunctor Is Cop × D → V

Cop × D → SetCop × D → VCop × D → 2Cop × D → R̄

termi contexti measure

⇓
M∗ : 2Cop

� (2D)op : M∗

Structure

?
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5.5 We Can Generalize Matrices to Enriched Profunctors

: Cop × D → V

5.51 A category is like a set with structure

5.52 A functor is a map between categories

5.53 A profunctor is a functor from the product of two arbitrary

categories to the Set category
5.54 A category enriched over V is a category having a v∈V ’s worth

arrows between two objects

5.55 A functor between the enriched categories D → C induces a

profunctor is Cop × D → V



5 The General Form of Distributions Is M : Cop × D → V

5.1 The (formal) key of neural LMs lies on embeddings

5.2 SVD over a PMI matrix provides the formal explanation for

words embeddings

5.3 This result has important consequences for explainability

5.4 A matrix can be understood as a function M : X × Y → R
5.5 We can generalize matrices to enriched profunctors

: Cop × D → V



6.1 From Matrices to Distributional Operators

X = {-,/,0,1,2,3,4,5,6,7,8,9,=,a,b,c, . . . ,w,x,y,z,é}
Y = X × X = {(-,-),(-,/),(-,0), . . . ,(é,z),(é,é)}

M : X × Y → R
(x, y) 7→ pmi(x, y)

Mx : X → RY

x 7→ M(x, −)

My : Y → RX

y 7→ M(−, y)
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RX Y

Mx
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M∗ : RX → RY

M∗ : RY → RX
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6.1 From Matrices to Distributional Operators

M∗M∗ : RX → RX

M∗M∗ : RY → RY

{u1, . . . , um} ⊂ RX

{v1, . . . , vn} ⊂ RY

{λ1, . . . , λmin (m,n), 0, . . . , 0}

M∗M∗ui = λiui

M∗M∗vi = λivi

The ui and vi are (linear)

fixed points!

X RY

RX Y

Mx

M∗M∗M∗

M∗M∗M∗

My

U := [u1, . . . , um]
M = UΣV T V := [v1, . . . , vn]

Σ :=

 √
λ1 ··· 0
...
. . .

...
0 ···

√
λr


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6.2 Fixed Points of Distributional Operators as Structure
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6.3 Embeddings as Functors Over Categories

X = {-,/,0,1,2,3,4,5,6,7,8,9,=,a,b,c, . . . ,w,x,y,z,é}
Y = X × X = {(-,-),(-,/),(-,0), . . . ,(é,z),(é,é)}

M : X × Y → R
(x, y) 7→ pmi(x, y)

Mx : X → RY

x 7→ M(x, −)

My : Y → RX

y 7→ M(−, y)

X RY

RX Y

Mx

M∗

M∗

My

M∗ : RX → RY

M∗ : RY → RX
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6.3 Embeddings as Functors Over Categories
C = {-,/,0,1,2,3,4,5,6,7,8,9,=,a,b,c, . . . ,w,x,y,z,é}
D = C = {-,/,0,1,2,3,4,5,6,7,8,9,=,a,b,c, . . . ,w,x,y,z,é}

Profunctor

M : Cop × D → Set
(c, d) 7→ M(c, d)

Mc : C →
(
SetD

)op

c 7→ M(c, −)

Md : D → SetCop

d 7→ M(−, d)

C (SetD)op

SetCop D

Y
o
n

ed
a

Mc

M∗

M∗

Md

Y
o
n

ed
a

M∗ : SetCop → (SetD)op

M∗ : (SetD)op → SetCop
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6.3 Embeddings as Functors Over Categories

Isbell Adjunction

M∗ : SetCop
� (SetD)op : M∗

M∗M∗ : SetCop → SetCop

M∗M∗ : (SetD)op → (SetD)op

Fix(M∗M∗) := {f ∈ SetCop |M∗M∗(f) ∼= f}
Fix(M∗M∗) := {g ∈ (SetD)op|M∗M∗(g) ∼= g}

Nucleus of M = {(f i, gi)}, such that:
M∗f i

∼= gi and M∗gi
∼= f i

The nucleus is a category

complete and cocomplete

C (SetD)op

SetCop D

Y
o
n

ed
a

Mc

M∗

M∗

Md

Y
o
n

ed
a

Categories C and D
can be enriched!

E.g.:

M∗ : 2Cop
� (2D)op : M∗

M∗ : R̄Cop
� (R̄D)op : M∗
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The nucleus is a category

complete and cocomplete

C (SetD)op

SetCop D

Y
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n

ed
a

Mc

M∗

M∗

Md

Y
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n

ed
a

Categories C and D
can be enriched!

E.g.:

M∗ : 2Cop
� (2D)op : M∗

M∗ : R̄Cop
� (R̄D)op : M∗

Juan Luis Gastaldi | Remarks on the Distributional Foundations of LMs 69/104



6 The General Form of Structures Is M∗ : VC � VD : M∗

6.1 SVD looks for linear fixed points of the linear operators M ∗M∗
and M∗M

∗

6.2 The set of fixed points reveals (limited) structural features

underlying the distributions

6.3 The nucleus of an enriched profunctor provides a generalization

of this setting
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7.1 Eigenvectors as Fixed Points
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7.1 Structural Features

Eigenvectors of M∗M
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7.2 Binary Fixed Points
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7.2 Binary Fixed Points

M∗M∗f = f
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7.2 “Eigensets”

M∗M∗f = f
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7.2 Partial Order Structure
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7.2 Dual Partial Order
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7.2 Paring of Partial Ordered Fixed Points
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7.2 Enriching Over R̄

Cop × D → 2Cop × D → R̄
⇓

M∗ : 2Cop
� (2D)op : M∗M∗ : R̄Cop
� (R̄D)op : M∗
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7.3 The Profunctor’s Nucleus Defines a System of Logical

Types
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7.3 Theory of Computational Types

Definition (Polar/Orthogonal - Girard, 2011)

[G]iven a binary operation, noted

a, b 〈a|b〉 : A × B → C and a subset P ⊂ C (the ‘pole’)

one can define the polar X⊥ ⊂ B of a subset X ⊂ A
(resp. Y ⊥ ⊂ A of a subset Y ⊂ B) by :

X⊥ := {y ∈ B : ∀x ∈ X, 〈a|b〉 ∈ P }

Y ⊥ := {x ∈ A : ∀y ∈ Y, 〈a|b〉 ∈ P }

� The map ‘polar’ is decreasing:

X ⊂ X′ ⇒ X′⊥ ⊂ X⊥.

� The set Pol(A) ⊂ P(A) of polar sets, i.e., of the
form Y ⊥, is closed under arbitrary intersections. In
particular, A is polar and X⊥⊥ is the smallest polar

set containing X.

� As a consequence, X⊥⊥⊥ = X⊥.
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form Y ⊥, is closed under arbitrary intersections. In
particular, A is polar and X⊥⊥ is the smallest polar

set containing X.

� As a consequence, X⊥⊥⊥ = X⊥.
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7.4 Formal Explainability
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7.5 The Resulting Objects Correspond to Classical Structuralist

Theoretical Constructs

Structure

Theory

“Task”

Distributional Hypothesis

The content of linguistic units is determined

by their distribution in a corpus.

Structuralist Hypothesis

Linguistic content is the effect of a virtual

structure underlying linguistic practices

within a community

Cop × D → R̄

R̄Cop
� (R̄D)op

⇓
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7.5 Structuralist Semiology: Language (Langue) and Text

A Language [...] is the Paradigmatic of a

Denotative Semiotic whose Paradigms are

Manifested by all Purports.

(Hjelmslev, 1975, Df. 38)

A Paradigmatic or Sign-System [...] is a

Semiotic System.

(Hjelmslev, 1975, Df. 35)

A Text [...] is the Syntagmatic of a

Denotative Semiotic whose Chains are

Manifested by all Purports.

(Hjelmslev, 1975, Df. 39)

A Syntagmatic or Sign-Process [...] is a

Semiotic Process.

(Hjelmslev, 1975, Df. 33)
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7.5 Structuralist Semiology: Semiotic

A Semiotic [...] is a Hierarchy, any of whose

Components admits of a further Analysis into

Classes defined by mutual Relation, so that any of

these classes admits of an analysis into Derivates

defined by mutual Mutation.

(Hjelmslev, 1975, Df. 24)

Mutation [...] is a Function existing between

first-Degree Derivates of one and the same Class, a

function that has Relation to a function between

other first-degree derivates of one and the same

class and belonging to the same Rank.

(Hjelmslev, 1975, Df. 23)
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7.5 Syntagmatic and Text (Vectors)
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7.5 Syntagmatic and Text (Fixed Points/Types)
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7.5 Paradigmatic and Langue (Vectors)
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7.5 Paradigmatic and �Langue (Nucleai/Types)
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7.5 Structuralism and Formalism

(Saussure, 1980)

(Hjelmslev, 1975) (Hjelmslev, 1935) (Harris, 1960)
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7.5 Structuralism and Formalism

(SpangHanssen1959)
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7.5 Structuralism and Formalism

(SpangHanssen1959)
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7 This New Structuralist Formalism Provides New

Representational Tools for Explainability and Interpretability

7.1 Linear fixed points exhibit interpretable characteristics

7.2 Presheaf embeddings could replace vector embeddings

7.3 The profunctor’s nucleus defines a system of logical types

7.4 The profunctor’s nucleus could allow to study tokenization,

embedding, and attention in a unified formal way

7.5 The resulting objects correspond to classical structuralist

theoretical constructs



8.1 Language Models Are Culture Models

� A formal approach to data analysis can contribute to

inferring symbolic language models from linguistic data.

� Resulting models are, a priori, models of

the data.

� The cognitive content of such models is suspended,

and cannot be restored without raising the problem of

the data.

� The scale of the data for such models

exceeds the individual scale.

� Cultural conditions of data production

become constitutive in the relation between cognitive

contents and language models.

Culture

Cognition

Language Computation
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8 Language Models Are Culture Models

8.1 A formal approach to data analysis can contribute to inferring

symbolic language models from linguistic data

8.2 Resulting models are, a priori, models of the data
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cannot be restored without raising the problem of the data
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Main Argument

1 LLMs have no a priori cognitive import

2 The empirical study of LLMs has no epistemological grounds

3 Distributionalism is the best theoretical candidate to study LLMs

4 Distributionalism is a corollary of structuralism

5 The general form of distributions is M : Cop × D → V
6 The general form of structures is M∗ : VC � VD : M∗
7 This new structuralist formalism provides new representational

tools for explainability and interpretability

8 Language models are culture models
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Full Argument I

1 LLMs have no a priori cognitive import

1.1 The cognitive import of computational language models is not

unconditional

1.11 The contemporary connection between computational LMs and cognition

was set up by Chomsky

1.12 Yet, he denies any theoretical legitimacy to LLMs

1.13 The connection set up by Chomsky has very precise epistemological

conditions

1.2 The epistemological condition ensuring such a connection does not hold

for LLMs

1.3 The lack of cognitive import does not prevent LLMs to be models of

language

1.31 The Chomskyan condition does not hold of necessity

1.32 Content can be an effect of form

1.33 The divorce between language and thought is not recent



Full Argument II

2 The empirical study of LLMs has no epistemological grounds

2.1 The NLP field has embraced an empirical turn

2.2 But LLMs are just computable functions

2.3 There is no empirical way of knowing what a computable function does

2.4 The only valid epistemological question is: What is this function the

implementation of?

3 Distributionalism is the best theoretical candidate to study LLMs

3.1 All linguistic properties of an LLM come from distributions in data

3.2 Distributionalism is often associated to contexts

3.3 Contexts are often understood cognitively or pragmatically

3.4 The global character of distributional properties challenges cognitive and

pragmatic interpretations

3.5 Distributionalism is not a thesis about cognition, but about the structure of

language



Full Argument III

4 Distributionalism is a corollary of structuralism

4.1 The source of distributional properties is a virtual structure

4.2 The idea of virtually structured distributions is at the heart of classical

structuralism

4.21 Saussure’s notion of sign is intrinsically distributional

4.22 “Langue” as a virtual structure behind distribution is the very object of

Saussurean linguistics

4.23 Analogical operations local operators of such virtual a structure

4.3 We need to move on from the distributional hypothesis to the structuralist

hypothesis

5 The general form of distributions is M : Cop × D → V
5.1 The (formal) key of neural LMs lies on embeddings

5.2 SVD over a PMI matrix provides the formal explanation for words

embeddings



Full Argument IV

5.3 This result has important consequences for explainability

5.4 A matrix can be understood as a function M : X × Y → R
5.5 We can generalize matrices to enriched profunctors : Cop × D → V
5.51 A category is like a set with structure

5.52 A functor is a map between categories

5.53 A profunctor is a functor from the product of two arbitrary categories to

the Set category
5.54 A category enriched over V is a category having a v∈V ’s worth arrows

between two objects

5.55 A functor between the enriched categories D → C induces a profunctor is

Cop × D → V
6 The general form of structures is M∗ : VC � VD : M∗
6.1 SVD looks for linear fixed points of the linear operators M∗M∗ and M∗M

∗

6.2 The set of fixed points reveals (limited) structural features underlying the

distributions



Full Argument V
6.3 The nucleus of an enriched profunctor provides a generalization of this

setting

7 This new structuralist formalism provides new representational tools for

explainability and interpretability

7.1 Linear fixed points exhibit interpretable characteristics

7.2 Presheaf embeddings could replace vector embeddings

7.3 The profunctor’s nucleus defines a system of logical types

7.4 The profunctor’s nucleus could allow to study tokenization, embedding,

and attention in a unified formal way

7.5 The resulting objects correspond to classical structuralist theoretical

constructs

8 Language models are culture models

8.1 A formal approach to data analysis can contribute to inferring symbolic

language models from linguistic data

8.2 Resulting models are, a priori, models of the data



Full Argument VI

8.3 The cognitive content of such models is suspended, and cannot be

restored without raising the problem of the data

8.4 The scale of the data for such models exceeds the individual scale

8.5 Cultural conditions of data production become constitutive in the relation

between cognitive contents and language models
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Main Argument

1 LLMs have no a priori cognitive import

2 The empirical study of LLMs has no epistemological grounds

3 Distributionalism is the best theoretical candidate to study LLMs

4 Distributionalism is a corollary of structuralism

5 The general form of distributions is M : Cop × D → V
6 The general form of structures is M∗ : VC � VD : M∗
7 This new structuralist formalism provides new representational

tools for explainability and interpretability

8 Language models are culture models


