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Philosophy and NLP

o Philosophy seems absent from current developments in neural language models
(NLM)

— Usually summoned to do “ethics of Al"

o However, there are many epistemological challenges where philosophy could
intervene

— What do NLM teach us about language”?

— One question in this direction: How can meaning emerge from (linguistic) form?
- The current debate seems to miss the point about the nature of language

— The only beginning of an answer is given by the distributional hypothesis



The Distributional Hypothesis

“You shall know a word by the company it keeps!” (Firth, 1957)

“Words which are similar in meaning occur in similar contexts” (Rubenstein &
Goodenough 1965)

“Words with similar meanings will occur with similar neighbors if enough text
material is available” (Schitze & Pedersen 1995)

“A representation that captures much of how words are used in natural context will
capture much of what we mean by meaning” (Landauer & Dumais 1997)

“Words that occur in the same contexts tend to have similar meanings” (Pantel
2005)

“The degree of semantic similarity between two linguistic expressions A and B is a
function of the similarity of the linguistic contexts in which A and B can appear”
(Lenci, 2010)



The Structuralist Hypothesis: Hjelmslev

“A priori it would seem to be a generally valid thesis that for every process there is a
corresponding system, by which the process can be analyzed and described by
means of a limited number of premises. It must be assumed that any process, can be
analyzed into a limited number of elements recurring in various combinations. Then,
on the basis of this analysis, it should be possible to order these elements into classes
according to their possibilities of combination. And it should be further possible to set
up a general and exhaustive calculus of the possible combinations.”

(Hielmslev, 1953, p. 9)



The Structuralist Hypothesis

o Meaning is the effect of structure

o Distributional properties convey meaning only through the action of a latent
structure determining possible semantic values, and which is inseparable from the
principles of identification of the elementary units of language, since meaning is the
effect of discriminating operations performed through segmentation procedures of
which the units of language keep the trace

o Linguistic content is the effect of a virtual structure of classes and dependencies at
multiple levels underlying (and derivable from) the mass of things said or written in a
given language
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Subword Tokenization
(Sennrich et al., 2016)

Word Embeddings
(Mikolov, Sutskever, Chen, Corrado, and Dean, 2013)

Self-Attention
(Vaswani et al., 2017)
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Word Embeddings



Word Embeddings: Vector
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Mauri_Liberati
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Embedding Space: Similarity and Analogy
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Embedding Space: Other Applications
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word2vec Models
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Credit: Ferrone et al., 2017
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word2vec Explained
(Levy and Goldberg, 2014)

= > > #w,c)(logo(W-¢)+k-E.yp,|logo(—w - cn)])

weVy, ceVe

ot vl =0 when @-¢ =log <#Ew)c;£|D|> log k

o(w - ¢)

Three results:
o M = PMI(w,c) —log k (Pointwise Mutual Information)
« W is low dimensional

» The Singular Value Decomposition (SVD) provides an exact solution to
find W



Pointwise Mutual Information (PMI)
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Singular Value Decomposition (SVD)

M =UXV"
Where:
M = m x n (real or complex) matrix
U = m x m unitary matrix
Y = m x nnon-negative real rectangular diagonal matrix

V* = conjugate transpose of V, a n x n unitary matrix
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Truncated SVD

M =UXV*
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Credit: Angela Ju


https://www.linkedin.com/pulse/ml-algorithm-singular-value-decomposition-angela-ju?trk=read_related_article-card_title

Embeddings as Truncated SVD
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Example: Characters in Wikipedia
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SVD of Wikipedia Character PMI Matrix

U 2 Vv
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Truncate and Embed
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The Structure Behind Embeddings



But Why?

4 Why does this produce good word represen-
tations?

Good question. We don’t really know.

The distributional hypothesis states that words in similar contexts have sim-
ilar meanings. The objective above clearly tries to increase the quantity vy, - v,
for good word-context pairs, and decrease it for bad ones. Intuitively, this
means that words that share many contexts will be similar to each other (note
also that contexts sharing many words will also be similar to each other). This
is, however, very hand-wavy.

Can we make this intuition more precise? We'd really like to see something
more formal.

(Goldberg and Levy, 2014)
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Singular Value Decomposition (SVD)

M =UXV"
Where:
M = 'm xn (real or complex) matrix
U = m x m unitary matrix
Y = m X nnon-negative real rectangular diagonal matrix
V* = conjugate transpose of V', a n x n unitary matrix
In particular:

o The columns of U (left singular vectors) are eigenvectors of M x M*

o The rows of V* (right singular values) are eigenvectors of M* x M

» The non-zero elements of X (non-zero singular values) are the square roots
of the non-zero eigenvalues of M x M* or M* x M
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“Eigenstructure”
Eigenvectors of M x M*:
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Eigenvectors of M x M*:
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Eigenvalues of M x M*:
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“Eigenstructure”
Eigenvectors of M x M*:

-/ 012 3456 789 =2abocdefghiijklmnowpaqgrstouvuwzxyzé
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Figenvalues of M x M*:

Eigenvectors of M* x M:

- --/-0-1-2-3-4-5-6-1
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Eigenvectors as Fixed Points
(M x M*)v = X\v
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Binary: Formal Concepts
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Structuralist Tools

Systime. +a A B B vy T
ENVIRONMENTS
/el am | onn | osp
a a
A . .
A dell | InCm | Spo |/'Sbo e Clo s §lsomls ot |
u ul
gl pr | D |avn| o ?A sv
L
mee | 6 [ A | En /D |Ab
B| I » t VIiVvIiVvI|Vv |V
r| At | GEq |Adsm I/Al s | s [N Vv v
k v v
+a A
a LIV ST . v
yf | | m | oea
Y G v
fader| me | mte | P g v
EqPr | Ad | Avi | cvi | It | psa ¢
r V|V v
PstTy| AbCp | PLAb | EI | Ablnt | Abpst
/ r v
7
g | N | Adst | mer | mt | et

(Hielmslev, 1935)

(Harris, 1960)



a b d e f g h i
a | aa ab ad af ag ah
b | ba bi
d | da de di
e eb ed eg
f fe
g gi
h | ha hi
i id ih i
Diagram 1.
b d f g h a e i
f fa fe
h ha hi
8 ga ge gi
b ba be bi
d da de di
a| ab ad af ag ah aa
e| eb ed ef eg
i| ib id ig ih i
Diagram 3.

Structuralist Tools
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Structuralist Tools

Table 8.
Vowel X binary final cluster (cf. sect. 84).

ft g ks ds vn vl dr! mp nk ng nd nt os Ik Id It rk rd 1t m S T iC
a 510 6 3 9 8 6 8 16 20 14 9 6 9 8 11 7 1 9 3 168 281 3 a
e - - 3 1 3 2 2 1 - 4 7 5 6 - 3 5 - 1 3 3 49 95 133 e
i 7 6 9 5 - 1 2 4 13 11 20 8 3 2 11 6 6 1 1 - 116 171 - i
o 3 2 2 5 4 2 1 11 2 3 2 - 4 13 3 6 9 10 4 77 120 - o
u 2 9 5 4 - - 6 12 8 4 12 3 2 4 8 4 4 - 2 - 89 143 - u
y - 2 - 2 - -1 2 4 7 6 2 - 1 6 6 3 2 1 - 45 56 - y
2 4 11 1 - 4 4 2 2 9 11 8 1 3 2 11 4 6 6 6 4 99 145 - ®
[} 5 2 - - 1 4 - - - -1 2 3 - - - 3 - 1 6 28 47 10 [}
aa - - -1 - -1 - - - 4 - - - - - - 2 -1 9 1 - aa

26 42 26 21 21 21 21 30 51 59 75 32 23 22 60 39 35 22 33 21 680 1069 46

(SpangHanssen1959)
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Conclusions

Neural language models (NLMs) are the implicit implementation of a theory of
language

Starting from an operational treatment of syntagmatic relations, NLMs infer
paradigmatic relations, and explore commutation properties identifying paradigmatic
and syntagmatic units at different levels, and dependencies between them.

If NLMs can account for meaning, it is not because they are intelligent, but
because meaning is the effect of (linguistic) structure and NLMs perform a
structural analysis of language

Restituting the implicit structuralist grounding can provide interpretability and a
reorientation of the research field



Challenges

o Politics of the corpus

» Non-cognitive philosophy and theory of language

o Integrated treatment of tokenization, embedding and attention
o Connection between distributional and structural features

o Treatment of long term dependencies

o Computability, tractability

o Generalization to non-linguistic corpora (semiology)



Generalization
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