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Szegedy-Marcus Bet on Deep Mathematics

Christian Szegedy
@ChrSzegedy

| am happy to have a long bet with anyone including
@MelMitchelll or @GaryMarcus on the formalization +
theorem proving capabilities of Als by 2029.

| am fairly confident that we will have a system with
comparable or stronger capabilities to/than strong human
mathematicians.

@ Joscha Bach @Plinz- 07.06.22

I know less about the sota in modeling math problems, but natural language
parsing of school and undergrad math problems into solvers is already
beginning to work, and | don't really expect it to hit any walls before 2029.

Show this thread

09:58 - 07.06.22 - Twitter Web App

23 Retweets 8 Quote Tweets 210 Likes

o

B

Gary Marcus % @GaryMarcus - 07.06.22

Replying to @ChrSzegedy and @MelMitchell

Ok @ErnestSDavis & | will take your action, up to $100. There is
nothing yet we know that can read any kind of mathematical article or
book with unformalized proofs and turn it into formalization. Gap
between mathematics in English and mathematics in formal notation is
enormous.

O3 T (VA &N
Christian Szegedy @ChrSzegedy - 08.06.22
Sounds fun! lam in. ;)

Q2 u Q10 &

Christian Szegedy @ChrSzegedy - 07.06.22
I could give a precise definition along these lines:

A diverse set of 100 graduate text books are automatically formalize/
verified in a popular proof assistant (eg Lean).

10% of problems from a preselected 100 open human conjectures is
proved completely autonomously.
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Overview of Artificial Neural Nets



Neural Networks
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Credit: Jeremy Jordan
https://www.jeremyjordan.me/intro- to- neural-networks/
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Deep Neural Nets (DNNs)
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Philosophical Significance of Neural Applications to Mathematics



Main Trends in Neural Applications to Mathematics

o Proof-Oriented
— Bansal et al., 2019; Kaliszyk et al.,

[ CNNIRNN Sequence model | | CNNIRNN Sequence model |
Axiom first order logic Conjecture first order logic
sequence sequence

(Alemi et al., 2016)
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Main Trends in Neural Applications to Mathematics

o Proof-Oriented
— Bansal et al., 2019; Kaliszyk et al.,

Fully connected layer with 1
output

2017. 5 s
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Lample and Charton, 2019; Li et al.,
2021; Ryskina and Knight, 2021
o Skill-Oriented

— Brown et al., 2020; Peng et al.,
2021; Shen et al., 2021

(Lample and Charton, 2019)
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Main Trends in Neural Applications to Mathematics

o Proof-Oriented

— Bansal etal., 2019; Kaliszyk et al.,
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Lample and Charton, 2019; Li et al.,
2021; Ryskina and Knight, 2021

o Skill-Oriented

— Brown et al., 2020; Peng et al.,

2021: Shen et al., 2021

o Heuiristic-Oriented
— Davies et al., 2021
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Accuracy

100

40

20

Arithmetic in Transformers

Arithmetic (few-shot)

Two Digit Addition
Two Digit Subtraction
Three Digit Addition
Three Digit Subtraction
Four Digit Addition
Four Digit Subtraction
Five Digit Addition
Five Digit Subtraction
Two Digit Multiplication
Single Digit Three Ops

04B 08B 1.3B 26B 6.7B  13B 175B
Parameters in LM (Billions)
(Brown et al., 2020)



Test Accuracy
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Arithmetic in Transformers

—a— 10E-BASED “3 10el 2 10e0”

—&— 10-BASED “3102”

—A— WORDS “thirty-two”

—&— UNDERSCORE “3_2”
FIXED-CHARACTER “0 0 3 2”
CHARACTER “3 2”

—e— DECIMAL “32”

5 10 15 20 25 30
# of digits

Figure 1: Accuracy of different number representations on the addition task.
(Nogueira et al., 2021)



Philosophical Significance

o The fact that mathematical properties can be addressed from the empirical
perspective of current ML approaches should be enough to raise a whole series of
philosophical questions.

o However, the fruitful encounter between the philosophy of mathematics and
current machine learning practices has not yet taken place.

o First step in this direction:
focus on the relation between mathematics and natural language (textuality).

o Question to be asked:
What must mathematics be, given that models designed to analyze, reproduce
and manipulate natural language are able to grasp some significant aspects of it.
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Distributionalism and Word Embeddings

o Distributional Hypothesis
(Harris, 1960; Saussure, 1959)

— “You shall know a word by the
company it keeps!” (Firth, 1935)

— The content of a linguistic unit is
determined by its distribution over a
corpus (i.e., the other units appearing
in its context)



Distributionalism and Word Embeddings

o Distributional Hypothesis
(Harris, 1960; Saussure, 1959)

— “You shall know a word by the
company it keeps!” (Firth, 1935)

— The content of a linguistic unit is
determined by its distribution over a
corpus (i.e., the other units appearing
in its context)

o Computational interpretation:
Word Embeddings

i-th output = P(w, = i| context)

softmax
[ (XX D)
. N
most| computation here \
\
\
\
|
tanh !
- °e) |

n
I --------------------- shared parameters i

index for w;_,41

across words

index for w;,_»

index for Wi

(Bengio et al., 2003)



a
cat
dog

mouse
catches

eats

a
cat
dog

mouse
catches

cats

a
cat
dog

mouse
catches
eats
a
cat
dog
mouse
catches

eats

coocor~o ocococoow

co~oco0C cooo O

Wi
Wi
7 Wlnxk'/

/

Word Embeddings: word2vec
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Source: Ferrone etal., 2017



Word Embeddings: Example

o Example: house
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— Similarity
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o Example: house
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o Syntactic and semantic properties
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Word Embeddings: Example

o Example: house
pouse [0 ENEECEE [ 1]

lo.2s
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o Syntactic and semantic properties

— Similarity
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Word Embeddings: Example

o Example: house
vouse I A
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o Syntactic and semantic properties

— Similarity
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house cosine distance

houses 0.292761
bungalow 0.312144
apartment 0.3371
bedroom 0.350306
townhouse 0.361592
residence 0.380158
mansion 0.394181
farmhouse 0.414243

duplex 0.424206

homes 0.43802

Word Embeddings: Similarity
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deputies ggsembled theatre
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headquarters members y ¥
opened N
jes
representativés K oo, &2
e sresidence ;
senate
o village member statue
nobili
parliament Y church house
royal oty
town
england
queen
duke edward

Vinn

(https://projector.tensorflow.org)


https://projector.tensorflow.org

Word Embeddings: Analogy

Vking — Uqueen ~ Uhero — Uheroine

word2vee PCA projection: Gender
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Word Embeddings: Analogy

Vbetter ~ Usoft

word2vee PCA projection: Comparatives
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oat o caballo (horse)

o3- vaca (cow)
o2} perro (dog)

o cerdo (pig)

04t O gato (cat)

(Mikolov et al., 2013)
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Word Embeddings as Matrix Factorization

o Word2vec performs an implicit factorization of a
word-context matrix (Levy and Goldberg, 2014)

— (shifted) pointwise mutual information (PMI)
— Truncated SVD to reduce dimensionality

o Equivalent results can be achieved with explicit vector
representations (Levy et al., 2015)



Word Embeddings as Matrix Factorization

Output
Probabilities

o Word2vec performs an implicit factorization of a
word-context matrix (Levy and Goldberg, 2014)

— (shifted) pointwise mutual information (PMI)
— Truncated SVD to reduce dimensionality

o Equivalent results can be achieved with explicit vector
representations (Levy et al., 2015)

o More complex architectures (e.g. Transformers, Vaswani
et al., 2017) are based on these representations for
elementary units.

Add & Norm
Feed
Forward
Add & Norm

Multi-Head
Attention

Add & Norm

Feed
Forward

Nx

Add & Norm

Nx
Add & Norm aas
Multi-Head Multi-Head
Attention Attention
|\ J
Positional N Positional
Encoding Encoding
Input Output
Embedding Embedding
Inputs Outputs

(shifted right)

(Vaswani et al., 2017)



Mathematical Embeddings

. . R :
o Several works on mathematical embeddings: N -
(Gao et al., 2017, Greiner-Petter et al., 2019, 2020; Krstovski 2 * s
and Blei, 2018; Mansouri et al., 2019; Naik et al., 2019; Purgat 50 "‘

etal., 2021; Ryskina and Knight, 2021; Thawani et al., 2021) ”

-100 -0.75 -0.50 -0.25 000 025 050 075 100

(Mansouri et al., 2019)

o Al least two reasons why it seems insufficient
— Lack of focus on the operational content of expressions.

- 406 added to 326 equals 732
- A A Bis likely to be a premise in the proof of some given logical statement
- y" —y = 0 accepts the solution y(x) = cie* + coe™™

— Embedding techniques are adopted uncritically



Dimensions of Formal Content

Formal Content: the dimension of content which finds its source in the internal relations
holding between the expressions of a language.
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Dimensions of Formal Content

Formal Content: the dimension of content which finds its source in the internal relations
holding between the expressions of a language.

o Syntactic Content. the content a unit receives as a result of the multiple
dependencies it can maintain with respect to other units in its context

o Characteristic Content. the content resulting from the inclusion of a unit in a class
of other units by which it accepts to be substituted in given contexts

o Informational Content: the content related to the non-uniform distribution of units
within those substitutability classes



Syntactic
Content

“the gavagai is on the
mat”

Type Theory

Type

Dimensions of Formal Content

Characteristic Informational
Content Content

{cat:0.059%,

{cat, dog, spider, dog:0.012%,
gavagai} spider:0.009%
gavagai:0.000%}

: Probability and Information
Clustering yTheory

Class Probability Distribution
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Distributional Arithmetics



Arithmetical Content

o How is it possible that a distributional approach to (natural) language can account
for the mathematical content of mathematical expressions”?
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Arithmetical Content

o How is it possible that a distributional approach to (natural) language can account
for the mathematical content of mathematical expressions”?

o lllustration: recursive structure and total order of natural numbers

o The task is to identify:

— Class of numerals as an autonomous class among all character strings (characteristic
content)

— lterative construction principle and self-similar syntactic embedding (syntactic content)

— Probability distribution characterizing the order of all elements in the class of numerals
(informational content)
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The Class of Numerals

A; ; = pmi(ci;cj) = log%

e
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Compressed Matrix
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Self-Similar Syntactic Embedding

-10
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Self-Similar Syntactic Embedding

N ———
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Total Order Through Benford’s Law

Distribution of digits

p(d1)

—e— Benford

—&— Uniform

—e— Marginal Bigram
—e— Numerals

—e— Numerals > 5-digits

p(died2)

Regression over 2-digit sequences

0.084

0.06

0.04

0.024

. e 2-digit sequences
Benford
Lowess




Conclusions

o Semantic features of natural numbers could be derived from the distributional
properties of syntax by means of tools associated to natural language processing

— Maybe also other mathematical contents”?

+ Distributional approaches provide an original perspective on mathematical
contents, unseen within the philosophy of mathematics

o Potentially useful for the history and the philosophy of scientific practices, due to
the central role of the analysis of corpora

o A philosophical account of ML results can articulate the need for the explicit
derivation of structural features underlying the syntactic data. We need to move
from a distributional to a structuralist conception of language.
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