
Preprint

FROM LANGUAGE MODELS OVER TOKENS
TO LANGUAGE MODELS OVER CHARACTERS

Tim Vieira∗ ,1 Ben LeBrun2 Mario Giulianelli1 Juan Luis Gastaldi1 Brian DuSell1
John Terilla4 Timothy J. O’Donnell3,2,5 Ryan Cotterell1
1ETH Zürich 2Mila – Quebec Artificial Intelligence Institute 3McGill University
4City University of New York 5Canada CIFAR AI Chair, Mila

ABSTRACT

Modern language models are internally—and mathematically—distributions
over token strings rather than character strings, posing numerous challenges for
programmers building user applications on top of them. For example, if a prompt
is specified as a character string, it must be tokenized before passing it to the
token-level language model. Thus, the tokenizer and consequent analyses are
very sensitive to the specification of the prompt (e.g., if the prompt ends with a
space or not). This paper presents algorithms for converting token-level language
models to character-level ones. We present both exact and approximate algorithms.
In the empirical portion of the paper, we benchmark the practical runtime and
approximation quality. We find that—even with a small computation budget—our
method is able to accurately approximate the character-level distribution (less than
0.00021 excess bits / character) at reasonably fast speeds (46.3 characters / second)
on the Llama 3.1 8B language model.

https://github.com/rycolab/token-to-char-lm

1 INTRODUCTION

For various technical reasons, modern language models are engineered as probability distributions
over strings of tokens rather than strings of characters. However, this leads to a fundamental tension
between the users of large language models and the engineers who build them. Specifically, token-
level models are rife with unintuitive behaviors that—without a technical fix—baffle users. As an il-
lustrative example of a common user complaint, we exhibit the prompt boundary problem (see below).
This paper provides a principled solution to the prompt boundary problem as well as other oddities
that make interfacing with token-level language models with character-level prompts hard for users.

Tokenized language models: A brief overview. Let Σ be an alphabet of characters, and let Σ∗

denote the set of all strings that can be built from it. Suppose there is a true distribution p∗Σ over

Σ∗ that we seek to model. We observe a training corpus of character strings: σ(1), ... ,σ(M) i.i.d.∼ p∗Σ.
However, rather than estimating a language model that approximates p∗Σ directly, we employ a
(possibly stochastic)1 tokenizer τ that transforms the training corpus into a corpus of token strings.
δ(1) ∼ τ(· | σ(1)), ... , δ(M) ∼ τ(· | σ(M)). Next, we estimate a token-level language model to fit
the strings δ(1), ... , δ(M). Lastly, we use p∆ to generate character strings by means of the following
generative process: (i) sample δ ∼ p∆ and (ii) return σ = κ(δ) where κ is a decoding function. Let
pΣ denote the resulting distribution of this process. Practically, we hope that the choice of τ and κ
should aid in our ability to estimate p∗Σ in the sense that p∗Σ ≈ pΣ.2 Commonly used tokenizers in the
realm of LLMs use tokenizers τ that break long strings into chunks. Intuitively, generating chunks

∗Please direct correspondence to tim.f.vieira@gmail.com and ryan.cotterell@inf.ethz.ch.
1The tokenizer τ is often deterministic (e.g., byte-pair encoding (Sennrich et al., 2016)), but stochastic tokenizers
(e.g., UnigramLM (Kudo, 2018)) are also of interest to the community.

2Gastaldi et al. (2024) give a general characterization of which tokenizers allow consistent statistical estimation.

1

ar
X

iv
:2

41
2.

03
71

9v
1

 [
cs

.C
L

]
 4

 D
ec

 2
02

4

https://github.com/rycolab/token-to-char-lm
mailto:tim.f.vieira@gmail.com
mailto:ryan.cotterell@inf.ethz.ch

Preprint

instead of individual characters helps because it effectively shortens strings without obfuscating them
using a complicated encoding.

The prompt boundary problem. Consider the case of GPT2 (Radford et al., 2019), which was
trained over token strings created from byte-pair encoding (BPE; Sennrich et al. (2016); Gage (1994)).
Suppose we wish to generate continuations of the prompt:

"In␣the␣kingdom␣of␣the␣blind,␣the

Unfortunately, the language model p∆ does not accept a character string; thus, it is common to
encode it as a token string with an encoding function τBPE:3,4

τBPE("In␣the␣kingdom␣of␣the␣blind,␣the) = [
"
1,

In
818,

␣the
262 ,

␣kingdom
13239 ,

␣of
286,

␣the
262 ,

␣blind
7770 ,

,
11,

␣the
262]

If we complete the prompt by taking the most likely next token (also known as greedy completion),
we generate the following continuation:

[
␣one
530 ,

-
12,

eyed
18834,

␣man
582 ,

␣is
318,

␣king
5822 ,

."
526]

Now that we have our generated output, we can apply the decoding function κ that maps token strings
to character strings as part of the tokenization protocol:

κBPE([
"
1,

In
818,

␣the
262 ,

␣kingdom
13239 ,

␣of
286,

␣the
262 ,

␣blind
7770 ,

,
11,

␣the
262 ,

␣one
530 ,

-
12,

eyed
18834,

␣man
582 ,

␣is
318,

␣king
5822 ,

."
526])

= "In␣the␣kingdom␣of␣the␣blind,␣the␣one-eyed␣man␣is␣king."

This is a good completion, as the string is a well-known proverb. However, if we tweak the prompt
ever so slightly by inserting a trailing whitespace:

τBPE("In␣the␣kingdom␣of␣the␣blind,␣the␣) = [
"
1,

In
818,

␣the
262 ,

␣kingdom
13239 ,

␣of
286,

␣the
262 ,

␣blind
7770 ,

,
11,

␣the
262 ,

␣
220]

greedy completion returns

[
ills
2171,

␣of
286,

␣the
262 ,

␣world
995 ,

␣are
389 ,

␣seen
1775 , ···]

This happens because the conditional probability (−→p∆) of generating the characters we want becomes
extremely unlikely:

Before: 0.98 = −→p∆(
␣one
530 | τBPE("In␣the␣kingdom␣of␣the␣blind,␣the))

After: 0.0000005 = −→p∆(
one
505 | τBPE("In␣the␣kingdom␣of␣the␣blind,␣the␣))

Hence, the trailing white space undesirably impacts the output, which no longer corresponds to the
proverb. This behavior is odd, as we would expect the most likely continuation (shown above) to be
invariant to whether or not the whitespace character (␣) is in the prompt or the continuation. More
broadly, the prompt boundary problem may be generally characterized as an unwanted sensitivity
to the characters at the boundary and the continuation. Our perspective is that the prompt boundary
problem arises from incorrectly conditioning the token-level language model on a string of characters
by using τ(σ) rather than finding token strings that best match the prompt σ.

↪→ The token healing heuristic: Lundberg & Ribeiro (2023) present token healing as a heuristic that
mitigates the prompt boundary problem. Token healing works as follows: (1) Tokenize (i.e., encode)
the prompt. (2) Backup the tokenized prompt to the penultimate token. (3) Generate the next token
subject to the constraint that it starts with the unmatched substring at the end of the prompt. (4)
Continue generating as usual. Now, we can see how token healing patches the running example:

τBPE("In␣the␣kingdom␣of␣the␣blind␣) = [
"
1,

In
818,

␣the
262 ,

␣kingdom
13239 ,

␣of
286,

␣the
262 ,

␣blind
7770 ,

,
11,

␣the
262 , �

��␣
220]

The most probable next token starting with ␣ is ␣one
530 . From here, generating the remaining tokens

recovers the desired output because it matches the prompt before we added the whitespace.

3In practice, τBPE outputs an integer sequence; however, we provide the substring gloss for readability.
4Here we write δ = τ(σ) instead of δ ∼ τ(· | σ) since τ is deterministic (i.e., a function).

2

Preprint

Unfortunately, backing up one token is insufficient for the general case, as the following example
will illustrate. Consider generating from GPT2 using the prompt Hello,␣worl:

τBPE(Hello,␣worl) = [
Hello
15496,

,
11,

␣wor
476 ,

l
75]

The most likely next character ought to be d as Hello,␣world is a common expression (popularized
in educational material). However, the most likely token is Hello,␣worlwide, an apparent misspelling
of worldwide.5 Unfortunately, token healing’s strategy of backing up by a single token cannot salvage

the poor tokenization as l
75 is still the most common next token that is consistent with the string l.

Thus, after generating l
75, we are back where we started, generating [

Hello
15496,

,
11,

␣wor
476 ,

l
75,

wide
4421].

↪→ Getting it right: A simple “probability 101” expression tells us the correct solution to the prompt
boundary problem. Consider a ∆∗-valued random variable Y , distributed according to p∆. Then, the
correct way to sample from p∆ conditioned on a character string σ is according to

p∆|Σ(δ | σ) def= P
Y∼p∆

[Y =δ |κ(Y) ⪰ σ] (1)

where we have conditioned on the event that the decoded string κ(Y) has σ as a prefix (i.e., κ(Y) ⪰
σ). While innovative with respect to the literature, the expression PY∼p∆ [Y =δ |κ(Y) ⪰ σ] conveys
the probability we are interested in precisely and concisely. For the more procedurally minded, this
corresponds to the following generation process:6

1 def conditional_token_generation(σ):
2 while True:
3 sample δ ∼ p∆
4 if κ(δ) ⪰ σ: # accept
5 return δ
6 else:
7 pass # try again...

This is, of course, very inefficient, but fear not—we will provide an equivalent, efficient algorithm.

(0.9820714) : [
Hello
15496,

,
11,

␣world
995]

(0.0106702) : [
Hello
15496,

,
11,

␣worlds
11621]

(0.0070749) : [
Hello
15496,

,
11,

␣worldwide
8688]

(0.0000830) : [
Hello
15496,

,
11,

␣worldly

43249]

(0.0000369) : [
Hello
15496,

,
11,

␣worldview
29081]

(0.0000225) : [
Hell
28254,

o
78,

,
11,

␣world
995]

(0.0000179) : [
Hello
15496,

,
11,

␣wor
476 ,

l
75]

(0.0000036) : [
Hello
15496,

,
11,

␣wor
476 ,

ls
7278]

Our method finds a set of token strings that form a covering,
a key technical concept we introduce in this paper. Once we
have the covering, we can pick a member of the covering in
proportion to its (normalized) prefix probability7 and then
repeatedly sample subsequent tokens until the end-of-string
event EOS is generated. We give a complete algorithm with
correctness guarantees in §3.4. Notice that each token string
in the covering (shown on the right) includes the character
string Hello,␣worl as a prefix, but it may have some extra
characters (marked by underlining) in the partially matched
last token—just like token healing. The size of the complete
covering may, in general, be exponential in the length of
the character string. However, we can enumerate its high-
probability members very quickly in practice. Since the
worst-case time to find the top-K elements of the covering
might be exponential, we provide a more aggressive approximation based on beam search that gives a

good approximation even with small beam sizes. Unlike token healing, the sequence [
Hello
15496,

,
11,

␣world
995]

is the highest probability member of the covering; thus, it is not pruned away by the aggressive
heuristics based on τ , as in token healing. The covering is defined only in terms of κ, and the pruning
is based on the language model probability, which typically prioritizes the kinds of token strings that
τ generates, as they are the most reflective of the language model’s training data. We provide an
algorithm for correctly conditioning a token-level model on a character string in §3.4.
5The misspelling is a testament to the extent to which the tokenized prompt is out-of-distribution.
6We adopt the common notational convention of probability theory where random variables are denoted by
upper-case symbols (e.g., Y), and values by lower-case symbols (e.g., δ).

7In the diagram, we have normalized the prefix probability to make it a distribution over the covering.

3

Preprint

Character-level model. Reasoning at the character level is intuitive. Consider again our example
illustrating the prompt boundary problem. Appending whitespace behaves intuitively at the character
level, as it satisfies the probabilistic chain rule:
−→pΣ(␣one | "In␣the␣kingdom␣of␣the␣blind,␣the)
= −→pΣ(␣ | "In␣the␣kingdom␣of␣the␣blind,␣the) · −→pΣ(one | "In␣the␣kingdom␣of␣the␣blind,␣the␣)

Here −→pΣ denotes the character-level model’s conditional distribution. Similarly, recall the
Hello,␣world example above. The character-level model correctly infers that d is the most likely
next character given Hello,␣worl. The computation of this conditional probability is simply the
total probability of the covering of Hello,␣world divided by the total probability of the covering
of Hello,␣worl. These quantities are derived from our concept of covering, which directly leads
to an algorithm for determining the distribution over possible next characters. Beyond the prompt
boundary problem, computing the conditional probability of a character string given a token-level
language model has many applications.

Applications. Aside from making character-level conditioning well-behaved, we highlight a few
applications of language models requiring careful reasoning about character strings.

↪→ Character-level constraints: Enforcing character-level constraints on allowed strings is a promis-
ing area that has received much recent attention (e.g., Scholak et al., 2021; Poesia et al., 2022; Geng
et al., 2023; Microsoft, 2023; Willard & Louf, 2023; Koo et al., 2024).

↪→ Computational psycholinguistics: Computing the contextual surprisal (negative log probability)
of a character substring to predict human reading times (Hale, 2001; Levy, 2008). Two recent papers
(Oh & Schuler, 2024; Pimentel & Meister, 2024) have given algorithms for computing the surprisal
of whitespace-separated words under a number of strong assumptions. Our algorithms can compute
the contextual surprisal of arbitrary character strings. Giulianelli et al. (2024) show experimentally
that having the flexibility to compute character substring surprisals leads to a more predictive model
of reading behavior than a fixed notion of a word.

Does it work? In the experimental portion of our paper (§4), we report the empirical runtime
of our algorithm for converting token-level language models to character-level ones and quantify
its accuracy in estimating the conditional distribution over characters. We find that even with a
limited computational budget, our method is able to provide an accurate estimate of the conditional
distribution over the next character under two publicly available language models (GPT2-large and
Llama 3.1 8B). We defer further discussion to §4. s

2 BACKGROUND

2.1 ALPHABETS AND STRINGS

An alphabet Γ is a non-empty, finite set of elements called symbols. A string γ over alphabet
Γ is a finite sequence γ = γ1 ··· γN for some 0 ≤ N < ∞ of symbols where γ1, ... , γN ∈ Γ.
Let |γ| denote the string’s length N . We denote the empty string as ε. For any alphabet Γ, let
Γ∗ denote the set of all strings over Γ, and let Γ+ denote the set of all non-empty strings over Γ.
For any two strings γ′,γ′′ ∈ Γ∗, we denote their concatenation as γ′·γ′′. Additionally, we define
S·S′ def= {γ·γ′ | γ ∈ S,γ′ ∈ S′} for any S, S′ ⊆ Γ∗. Given a string γ such that |γ| ≥ t, let γ<t

denote the string of the first t−1 characters of γ. We write γ ⪯ γ′ if γ is a prefix8 of γ′ and γ ≺ γ′

if γ is a proper prefix of γ′. The relation ⪯ defines a partial order on Γ∗. We write ⪰ and ≻ to refer
to the relations ⪯ and ≺ with their respective arguments transposed.

2.2 LANGUAGE MODELS AND PREFIX PROBABILITY

A language model pΓ is a probability distribution over Γ∗ where Γ is an alphabet. Let Y be a
Γ∗-valued random variable distributed according to pΓ and γ ∈ Γ∗. We define the prefix probability

8Formally, (γ ⪯ γ′) def= (∃γ′′ ∈ Γ∗ : γ′ = γ·γ′′) and (γ ≺ γ′) def= (∃γ′′ ∈ Γ+ : γ′ = γ·γ′′).

4

Preprint

−→pΓ(γ) as the probability that Y has γ as a prefix:

−→pΓ(γ) def= P
Y∼pΓ

[Y ⪰ γ] =
∑

γ′∈Γ∗

1{γ′ ⪰ γ} pΓ(γ′) (2)

We also define the following shorthand for the conditional prefix probability −→pΓ(γ′ | γ) as the
probability of the event Y ⪰ γ·γ′ provided that Y ⪰ γ:

−→pΓ(γ′ | γ) def= P
Y∼pΓ

[Y ⪰ γ·γ′ |Y ⪰ γ] =
−→pΓ(γ·γ′)
−→pΓ(γ)

=

∑
γ′′∈Γ∗ 1{γ′′ ⪰ γ·γ′} pΓ(γ′′)∑
γ′′∈Γ∗ 1{γ′′ ⪰ γ} pΓ(γ′′)

(3)

Note that the conditional prefix probability above is only well-defined when −→pΓ(γ) > 0.9 Usefully,
we may express the probability of γ as a product of conditional prefix probabilities:10

pΓ(γ) =
−→pΓ(EOS | γ)

|γ|∏
t=1

−→pΓ(γt | γ<t) (4)

where each −→pΓ(γt | γ<t) is an instance of Eq. (3), and

−→pΓ(EOS | γ) def=
pΓ(γ)
−→pΓ(γ)

(5)

Here, EOS is a distinguished end-of-string symbol that cannot appear in any alphabet. Of particular
interest are the single-symbol conditional prefix distributions −→pΓ(· | γ<t), as they may each be
interpreted as a probability distribution over the set Γ ∪ {EOS}—in fact, modern language models11

are defined via the product in Eq. (4) where each single-symbol conditional prefix probability comes
from the learned parametric model.12

An apparent chicken and egg problem. The reader may notice that the equations for pΓ(γ),−→pΓ(γ′ | γ), and −→pΓ(EOS | γ) may appear cyclical. The key to resolving the concern is to recognize
that the apparent cycle just needs a base case. In our presentation, we assumed that pΓ is the base
case. Some readers may view Eq. (4) as the definition of the language model pΓ, i.e., they take the
components on the right-hand side of Eq. (4) as the base case.

2.3 TOKENIZATION

We now discuss our basic formalization for tokenization.
Definition 1. An (exact) tokenization model is a tuple (Σ,∆, τ , κ) where

• Σ is an alphabet of character symbols
• ∆ is an alphabet of token symbols
• τ is a (possibly) stochastic encoder: τ(· | σ) is a probability distribution over ∆∗ for each σ ∈ Σ∗

• κ : ∆∗ → Σ∗ is a decoder function mapping token strings to character strings satisfying∑
δ∈∆∗

1{κ(δ) = σ}τ(δ | σ) = 1, for all σ ∈ Σ∗ (6)

The condition between τ and κ expressed in Eq. (6) is called exactness. One may consider more
general tokenization models in which κ is possibly stochastic and for which Eq. (6) may not hold.
All tokenization models considered in this paper will be exact and will be called simply tokenization

9Such a caveat is common of conditional probabilities. We note that the condition is always satisfied in practice
for softmax-normalized language models, as they place nonzero probability on all elements of Γ∗; hence, every
string in Γ∗ has a nonzero prefix probability.

10Note that conditional prefix probabilities satisfy the following chain rules: −→pΓ(γ·γ′) = −→pΓ(γ)−→pΓ(γ′ | γ) for
all γ,γ′ ∈ Γ∗, and −→pΓ(γ′·γ′′ | γ) = −→pΓ(γ′ | γ)−→pΓ(γ′′ | γ·γ′) for all γ,γ′,γ′′ ∈ Γ∗.

11E.g., transformers (Vaswani et al., 2017), RNNs (e.g., Mikolov et al., 2010; Sundermeyer et al., 2015), and
n-gram models (e.g., Shannon, 1948). These models are often called autoregressive, as they directly predict
the probability of the next symbol in the string based on its previous symbols using a parametric model.

12Note that this can lead to the issue of tightness (see, for example, Cotterell et al. (2024)) where probability is
lost to infinite sequences—leading to a probability model summing to less than one over Γ∗.

5

Preprint

models rather than exact tokenization models. Exactness is satisfied by lossless tokenizers, including
BPE (Sennrich et al., 2016), UnigramLM (Kudo, 2018)), and SentencePiece (Kudo & Richardson,
2018). Lossy tokenizers, such as those leveraging out-of-vocabulary (OOV) tokens, are not exact.
See Gastaldi et al. (2024) for the general case; in particular, for a proof that Eq. (6) implies that an a
priori stochastic κ must, in fact, be deterministic.

Definition 2. A tokenized language model pΣ is a language model over Σ∗ that is parameterized
by a language model p∆ over ∆∗ and a decoding function κ : ∆∗ → Σ∗. This tokenized language
model generates character strings via the following process: (i) δ ∼ p∆, (ii) σ ← κ(δ). Thus, the
character strings σ generated have the following distribution:

pΣ(σ)
def= P

Y∼p∆

[κ(Y) = σ], ∀σ ∈ Σ∗ (7)

Note that pΣ(σ) accounts for the fact that many token strings may be associated with a given
character string through κ.13 To describe that association, we define E(σ) def= {δ ∈ ∆∗ : σ = κ(δ)}
denote the set of encodings for any character string σ ∈ Σ∗.14

What about τ? The reader may notice that τ does not appear in Eq. (7). Although τ is essential
for generating training data, once the model p∆ has been trained, the information in τ is not of
immediate practical use. Moreover, attempts to leverage τ seem to lead to faulty heuristics, as we
discussed in the introduction. We note that under exactness (Eq. (6)), τ(σ) must be present in E(σ).
This is because exactness indirectly implies that E(σ) ⊇ {δ ∈ ∆∗ : τ(δ | σ) > 0} for all σ ∈ Σ∗.
In the common case where τ is deterministic (i.e., τ(δ | σ) ∈ {0, 1} for all δ ∈ ∆∗,σ ∈ Σ∗),
we emphasize that E(σ) is only lower bounded by {τ(σ)}. The tokenization model would need to
be bijective for E(σ) = {τ(σ)}. Unfortunately, common tokenizers (e.g., BPE) are not bijective
because they do not satisfy τ(κ(δ)) = δ for all δ ∈ ∆∗. We illustrate this in Example 1 below.

The mirage of the canonical tokenization. Consider the case when the encoder τ is deterministic.
In that case, we write δ = τ(σ), and we call this δ the canonical tokenization of σ. Note that
even if τ is deterministic, there may exist many noncanonical tokenizations δ′ ∈ E(σ) such that
δ′ ̸= τ(σ) with nonzero probability p∆(δ

′) > 0. Thus, the character string generation process
includes a mix of canonical and noncanonical token strings—making it incorrect to only consider
a character string’s canonical tokenization when assessing its probability. In practice, the conditional
probability PY∼p∆ [Y = δ |κ(Y) = σ] over the encodings δ of a character string σ tends to be
highly concentrated around the canonical tokenizations, as illustrated in Example 1 below.

Example 1.
On the right, we show the top-8 encodings E(Hello,␣world)
under GPT2 ranked by their conditional probability. This
short string has 78 tokenizations, which arise because there
are many ways to break up Hello,␣world into substrings from
the tokenization alphabet ∆:

∆ ⊇ { ,11,
H
39,

o
78,

␣
220,

␣w
266,

ld
335,

␣wor
476 ,

ell
695,

␣world
995 ,

He
1544,

orld
1764,

world
6894 ,

ello
11109,

Hell
28254,

Hello
15496,

llo
18798}

On the right, we see that the probability assigned to these
tokenizations is heavily concentrated on the canonical tok-

enization: τBPE(Hello,␣world) = [
Hello
15496,

,
11,

␣world
995].

(0.9999719) : [
Hello
15496,

,
11,

␣world
995]

(0.0000229) : [
Hell
28254,

o
78,

,
11,

␣world
995]

(0.0000024) : [
Hello
15496,

,
11,

␣wor
476 ,

ld
335]

(0.0000017) : [
He

1544,
llo

18798,
,
11,

␣world
995]

(0.0000004) : [
H
39,

ell
695,

o
78,

,
11,

␣world
995]

(0.0000002) : [
Hello
15496,

,
11,

␣w
266,

orld
1764]

(0.0000002) : [
H
39,

ello
11109,

,
11,

␣world
995]

(0.0000001) : [
Hello
15496,

,
11,

␣
220,

world
6894]

13Many authors (Cao & Rimell, 2021; Chirkova et al., 2023; Phan et al., 2024) have discussed the particular
complications introduced by the fact that for a given character string of length N , there are many token strings
that decode to it. Marginalizing over the token strings that generate a given character string improves perplexity,
but sometimes the improvements are only modest (Chirkova et al., 2023). However, prior work has not given
algorithms for inferring the distribution over the next character.

14Note that |E(σ)| can be very large, e.g., infinite in the worst case. In the case of BPE, it is exponential in |σ|.

6

Preprint

A character-level interface. A character-level interface to the token-level language model p∆ is
available in the following equations, which hold ∀σ,σ′ ∈ Σ∗:

−→pΣ(σ) = P
Y∼p∆

[κ(Y) ⪰ σ] (8)

−→pΣ(σ′ | σ) =
−→pΣ(σ·σ′)
−→pΣ(σ)

(9)

−→pΣ(EOS | σ) = pΣ(σ)
−→pΣ(σ)

(10)

These equations show that we can have a complete character-level language model derived from the
tokenized language model if we can compute—or approximate—the necessary summations implied
by Eq. (7) and (8); specifically,

pΣ(σ) =
∑
δ∈∆∗

1{κ(δ) = σ} p∆(δ) (11)

−→pΣ(σ) =
∑
δ∈∆∗

1{κ(δ) ⪰ σ} p∆(δ) (12)

We will develop effective methods for these summations in the remainder of the paper. We will study a
family of strict-prefix monotone decoders κ (described in §2.4) where Eq. (11) and Eq. (12) admit a fi-
nite summation. In §3.4, we give an algorithm for the prompt boundary problem using these concepts.

2.4 USEFUL PROPERTIES OF κ

This section provides a collection of definitions and basic results that are useful for characterizing
tokenizers. We aim to capture only the essential properties of tokenizers, such as BPE, while
committing to as few of its nuances as possible, as it will allow us to future-proof our methods.
Definition 3. We say that κ : ∆∗ → Σ∗ is prefix monotone if δ ⪯ δ′ =⇒ κ(δ) ⪯ κ(δ′) and
strict-prefix monotone if δ ≺ δ′ =⇒ κ(δ) ≺ κ(δ′).

In simpler terms, strict-prefix monotonicity says that concatenating a token to the encoding necessarily
concatenates at least one character to the decoded character string.
Example 2. The diagrams below illustrate how GPT2’s strict-prefix monotone κ gives rise to a certain
alignment between three token strings and the character string Hello,␣world:

H e l l o , ␣ w o r l d

Hello
15496

,
11

␣world
995

H e l l o , ␣ w o r l d

H
39

ell
695

o
78

,
11

␣world
995

H e l l o , ␣ w o r l d

Hello
15496

,
11

␣wor
476

l
75

d
67

More formally, every application σ1 ··· σM = κ(δ1 ··· δM) of a strict-prefix monotone mapping
has the following properties. Each token in δ1 ··· δM maps to one or more contiguous characters
in σ1 ··· σM . Moreover, the mappings do not exclude any characters, and no edges of the mapping
cross one another. Strict prefix monotonicity, in contrast to prefix monotonicity, ensures that there
are no deletions of tokens in the mapping, i.e., each token maps to at least one character.

Strict-prefix monotonicity is the key structural property that we require for the algorithms in §3,
as it allows us to replace an infinite sum with a finite sum in Proposition 1. Before moving on to
algorithms, we briefly mention multiplicative non-erasing decoders (defined below) as they are a
common special case of strict-prefix monotone decoders, as they include BPE (Sennrich et al., 2016),
WordPiece (Devlin et al., 2019), and SentencePiece (Kudo & Richardson, 2018). However, we will
not leverage multiplicativity beyond the remainder of this subsection.

• We say that a decoder κ is multiplicative if κ(δ·δ′) = κ(δ)·κ(δ′) for all δ, δ′ ∈ ∆∗, and non-
erasing if κ(δ) = ε =⇒ δ = ε.

• If κ is multiplicative, then κ is prefix monotone.
• If κ is multiplicative and non-erasing, then κ is strict-prefix monotone.
• If κ is multiplicative, then κ(δ1 ··· δN) = κ(δ1) ··· κ(δN) for all δ1 ··· δN ∈ ∆∗.

7

Preprint

3 ALGORITHMS

This section gives algorithms for pΣ(σ), −→pΣ(σ), −→pΣ(σ′ | σ), −→pΣ(EOS | σ), and conditional token
generation (i.e., our solution to the prompt boundary problem). Unlike prior papers (Cao & Rimell,
2021; Chirkova et al., 2023; Phan et al., 2024) on the topic of marginalizing tokenization strings
to compute, or estimate, the probability of character strings, i.e., compute pΣ(σ), we will provide
algorithms for computing conditional probabilities pΣ(σ

′ | σ) for any strings σ,σ′ ∈ Σ∗. Our
approach is based on estimating the prefix probability −→pΣ(σ), and it can be used in conjunction with
Eq. (3) to compute −→pΣ(σ′ | σ). Throughout this section, we assume that κ is strict-prefix monotone.

3.1 COVERING

Our primary tool for the prefix probability −→pΣ(σ) is the covering of σ. It is a subset of tokens asso-
ciated with the given string σ that is sufficient to evaluate its prefix probability. As we will see exper-
imentally (§4), this set’s subset of high-probability token strings is often small enough to enumerate.

Eq. (12) shows that we can, in principle, compute the prefix probability −→pΣ(σ) by summing over
prefix-encodings of σ, P(σ) def= {δ ∈ ∆∗ : κ(δ) ⪰ σ}. Unfortunately, P(σ) is infinitely large.
Fortunately, we can exploit the prefix monotone structure of κ to find a different way to perform the
summation by summing over a finite set.

Let δ ∈ ∆∗, and σ ∈ Σ∗. We say that δ covers σ if and only if κ(δ) ⪰ σ. Monotonicity ensures
that for all δ ∈ P(σ), we have that ∀δ′ ∈ ∆∗ : κ(δ·δ′) ⪰ σ. In other words, any δ that decodes to
an extension of σ (i.e., κ(δ) ⪰ σ) will continue to do so if we append tokens to it. Thus, we may
additionally qualify the relationship as δ minimally covers σ if and only if κ(δ1 ··· δM−1) ≺ σ. With
that in mind, we define ϕσ(δ) as the shortest prefix δ′ ⪯ δ such that κ(δ′) ⪰ σ, i.e., it maps any δ that
covers σ to a (possibly equal) token string that minimally covers σ. Next, we define the set of minimal
prefix encodings of C(σ), which we call the covering of σ, C(σ) def= {ϕσ(δ) | δ ∈ P(σ)}. A more
convenient expression for the covering C(σ) of a string σ ∈ Σ∗ is equal to the following subset of ∆∗:

C(σ) =
{
{ε} if σ = ε

{δ1 ··· δM ∈ ∆+ : κ(δ1 ··· δM−1) ≺ σ ⪯ κ(δ1 ··· δM)} otherwise
(13)

Example 3.
Recall the example of a covering of σ = Hello,␣worl from the introduction.
We have repeated it on the right and couched it in our terminology. Note
that the complete covering for this string contains 36,608 token strings; we
only show the top-8 according to their respective −→p∆.
• The covering for any given string σ always has the property that each

non-empty token string δ in the covering decodes to some string that is
an extension of the character string σ ⪯ κ(δ). This is illustrated by the
gloss string in the tokenization.

• However, it may include a partially matched token at its end (i.e., δM
in Eq. (13)). We have marked the extra characters by underlining them.
We note that the 7th member does not have a partially matched last token.

• Each token string in the covering has at most one partially matched token
thanks to the condition κ(δ) ≺ σ ⪯ κ(δ·δ). The 7th member of the cover
has a completely matched last token; hence, there is no underlining.

• We see that if we were to extend any member δ ∈ C(σ) with an arbitrary
string of additional tokens δ′, it would continue to decode to a string
such that κ(δ·δ′) ⪰ σ. Moreover, δ is minimal (i.e., ϕσ(δ) = δ).

C(Hello,␣worl) =

[
Hello
15496,

,
11,

␣world
995]

[
Hello
15496,

,
11,

␣worlds
11621]

[
Hello
15496,

,
11,

␣worldwide
8688]

[
Hello
15496,

,
11,

␣worldly

43249]

[
Hello
15496,

,
11,

␣worldview
29081]

[
Hell
28254,

o
78,

,
11,

␣world
995]

[
Hello
15496,

,
11,

␣wor
476 ,

l
75]

[
Hello
15496,

,
11,

␣wor
476 ,

ls
7278]

The notion of a covering is used to derive an algorithm for computing character-level probabilities
given a token-level language model. We first show how it gives us the prefix probability and
subsequently give equations for the remaining quantities of the character=level language model.

8

Preprint

Proposition 1. Suppose (Σ,∆, τ , κ) is a tokenization model where κ is strict-prefix monotone and
p∆ is a token-level language model. Then, the prefix probability −→pΣ(σ) for the character-level model
Eq. (7) is given by the equation below.

−→pΣ(σ) =
∑

δ∈C(σ)

−→p∆(δ), ∀σ ∈ Σ∗ (14)

Proof. We prove the proposition directly through the following manipulations.

−→pΣ(σ) =
∑

δ′∈∆∗

1{σ ⪯ κ(δ′)}p∆(δ′) (15)

= 1{σ = ε}p∆(ε) +
∑

δ′∈∆+

1{σ ⪯ κ(δ′)} p∆(δ′) (16)

= 1{σ = ε}p∆(ε) +
∑

δ·δ′·δ′′∈∆+

1
{
κ(δ) ≺ σ ⪯ κ(δ·δ′·��δ′′)

}
p∆(δ·δ′·δ′′) (17)

= 1{σ = ε}p∆(ε) +
∑

δ·δ′∈∆+

1{κ(δ) ≺ σ ⪯ κ(δ·δ′)}
∑

δ′′∈∆∗

p∆(δ·δ′·δ′′) (18)

= 1{σ = ε}p∆(ε) +
∑

δ·δ′∈∆+

1{κ(δ) ≺ σ ⪯ κ(δ·δ′)}−→p∆(δ·δ′) (19)

=
∑

δ∈C(σ)

−→p∆(δ) (20)

About the steps above: We start with the summation expression for the character-level prefix prob-
ability (i.e., Eq. (12)). We expand the summation into two cases (so that it will eventually match
the two cases in the expression for the covering Eq. (13)). Next, for each summand, we consider its
unique minimal prefix δ·δ′ covering σ. We see why ε is handled separately, as it cannot be covered
by a token sequence of that form. We exploit the key property of prefix monotone tokenizers (i.e.,
that once δ·δ′ covers σ, each extension δ·δ′δ′′ continues to cover it). This allows us to rearrange the
summation to sum over the extension δ′′, which is conveniently equal to the prefix probability of
δ·δ′. The final step is to recognize that the summands can all be indexed by the covering C(σ). ■

Eq. (14) is a substantial improvement over Eq. (8) for computing −→pΣ(σ). Specifically, we now
have a finite sum, as |C(σ)| is finite for all σ ∈ Σ∗. Bear in mind that the covering’s size is likely
too large to be practical, as there may still be a large number of summands; however, the set of
high-prefix-probability elements of the covering tends to be reasonably small, an observation that we
verify in §4, and leverage to develop practical algorithms in §3.

Given a covering, we filter it to the case of string equality, as

E(σ) = {δ ∈ C(σ) : κ(δ) = σ} , (21)

to give an expression of the string’s probability

pΣ(σ) =
∑

δ∈C(σ)

1{κ(δ) = σ} p∆(δ) =
∑

δ∈E(σ)

p∆(δ) (22)

3.2 ALGORITHMS FOR −→pΣ(σ) AND pΣ(σ)

The enumeration algorithm will enumerate elements of the covering along with their prefix probability
(for convenience). It filters prefixes of token strings that cannot eventually cover the target string σ.
The strict-prefix monotonicity property is essential for this filtering.

Our algorithm enumerate_cover performs recursive enumeration of the members of the covering
C(σ) along with some metadata. Specifically, the algorithm returns a collection of triples where each
triple (p′,σ′, δ′) satisfies δ′ ∈ C(σ), p′ = −→p∆(δ′), and σ′ = κ(δ′).

9

Preprint

8 def enumerate_cover(σ1 ··· σN):
9 if N = 0: return [(1, ε, ε)] # base case

10 result = []
11 for (p′,σ′, δ′) in enumerate_cover(σ1 ··· σN−1): # recurse
12 if |σ′| < N: # extend: δ′ needs to be longer to cover σ1 ··· σN

13 for δ′′ ∈ ∆:
14 σ′′ ← κ(δ′·δ′′)
15 if σ′′

N = σN: # filter: N th character matches
16 result.append((p′ · −→p∆(δ′′ | δ′),σ′′, δ′·δ′′))
17 elif σ′

N = σN: # filter: N th character matches
18 result.append((p′,σ′, δ′))
19 return prune(σ1 ··· σN, result)

Note that this method has an additional parameter, the function prune, which is used on the last
line. This method, as the name suggests, is used to limit the size of the covering to prevent excessive
growth. We will discuss this parameter shortly. For now, consider the following definition:

20 def prune_nothing(σ1 ··· σN, result):
21 return result

Below, we show how to use the output of the enumeration algorithm to compute several key quantities
in the character-level interface.

22 def C(σ):
23 return {δ′ for (_, _, δ′) in enumerate_cover(σ)}

24 def −→pΣ(σ):
25 return sum(p′ for (p′, _, _) in enumerate_cover(σ))

26 def E(σ):
27 return {δ′ for (_,σ′, δ′) in enumerate_cover(σ) if σ′ = σ}

28 def pΣ(σ):
29 return sum(p′ · p∆(EOS | δ′) for (p′,σ′, δ′) in enumerate_cover(σ) if σ′ = σ)

This algorithm is specified at a fairly high level; thus, in order to meaningfully discuss its running
time, we require some assumptions:

• κ: Our analysis assumes that κ(δ′·δ′′) can be evaluated in constant time given κ(δ′).
• −→p∆: Our analysis assumes that the cost of evaluating −→p∆(δt | δ<t) is constant given that −→p∆(δs |
δ<s) has been computed for 0 ≤ s < t.15

Under these assumptions, the running time of enumerate_cover(σ1 ··· σN) can be exponential
in N when no pruning is used. We provide detailed bounds on the covering’s size in App. A.
It is straightforward to verify that the space complexity is O(|C(σ)|), and the running time is
O(|∆| ·

∑|σ|
t=1 |C(σ<t)|) which is dominated by the |∆| · |C(σ)| term; thus, O(|∆| · |C(σ)|).

Pruning. We now consider some useful pruning heuristics for the algorithm, which make it an
approximation but substantially improve its running time. We propose a heuristic based on beam
search. This heuristic is very effective: it gives us a linear running time as a function of the character
strings’s length. It has a parameter K that controls the approximation quality. Larger K makes the
approximation more accurate, and the approximation becomes exact as K approaches the size of the
(largest intermediate) covering. For simplicity, we take K to be a global variable in the pseudocode.

↪→ Our pruning heuristic: Our pruning heuristic enumerates ≤ K distinct token strings modulo their
last token. This choice allows up to |∆| versions of the last token to be enumerated. Thus, the work
done at each step is O(K · |∆|), and the size of the result list is at most that size. Therefore, the
overall running time is O(N ·K · |∆|) for a character string of length N .16

15In the case of the common transformer language model (Vaswani et al., 2017), this can be achieved with
efficient caching and limiting context windows to a constant size.

16We note that finding the (unordered) collection of top-K elements from a set of size n is possible in O(n) time
via the median-of-medians algorithm (Blum et al., 1973). This is faster asymptotically than the commonly used

10

Preprint

30 def prune_top_K_buckets(σ1 ··· σN, results):
31 # Put items into buckets based on completely matched prefix
32 buckets = {}
33 for item in results:
34 (p,σ′, δ1 ··· δM) = item
35 # Exclude a partially matched last token from the key, if one exists

36 key = δ1 ··· δM−1 if |σ′| > N else δ1 ··· δM
37 buckets[key].append(item) # don't count last token
38 pruned = []
39 for bucket in (top K buckets according to their total probability):
40 for item in bucket:
41 pruned.append(item)
42 return pruned

Bundled beam summing implementation. App. B describes an implementation strategy that
improves the constant factors associated with the pseudocode above. The key idea is to group the
token sequences that fall into the same bucket in prune_top_K_buckets into a bundle that represents
them compactly. In particular, we can use a trie to efficiently filter out the next tokens that disagree
with the next character. This improves the per-iteration cost of that filter as it can via the data
structure, as it does the organizational work ahead of time in bulk. We can regard the trie as a local
language model that generates the next token character-by-character according to the probability
assigned by −→p∆(· | δ). Each bundle can be unbundled (if necessary) into the respective tuples that the
enumerate_cover algorithm maintains.

3.3 ALGORITHMS FOR −→pΣ(σ′ | σ) AND −→pΣ(EOS | σ)

This section gives algorithms for computing the character-level conditional prefix probability. Recall
the definition of the character-level conditional prefix probability, that is, Eq. (9) and (10), can be
computed from a certain ratio of calls to −→pΣ (and pΣ in the case of EOS). Below is a direct translation
of this into an algorithm that computes the distribution over Σ ∪ {EOS} given σ ∈ Σ∗:

43 def next_character_probability(σ): # slower version
44 Z = −→pΣ(σ); p = {}
45 for σ′ ∈ Σ:
46 p(σ′) = −→pΣ(σ·σ′)
47 p(EOS) = pΣ(σ)
48 return p/Z

The algorithm below is semantically equivalent to the one above. However, it is more efficient
because it reuses computations between iterations of the loop over σ′ ∈ Σ. The duplicated work was
caused by making separate calls to −→pΣ and pΣ for many related arguments; they are now fused in the
method below.

49 def next_character_probability(σ): # faster version
50 N ← |σ|; Z = 0; p = {σ′: 0 for σ′ ∈ Σ ∪ {EOS}}
51 for (p′,σ′, δ′) ∈ enumerate_cover(σ):
52 Z += p′

53 if |σ′| = N: # i.e., σ′ = σ
54 p(EOS) += p′ · −→p∆(EOS | δ)
55 for δ′′ ∈ ∆: # extend
56 σ′′ ← κ(δ′·δ′′)
57 p(σ′′

N+1) += p′ · −→p∆(δ′′ | δ′) # sum prefix prob. of (N+1)th character
58 else: # i.e., σ′ ⪰ σ
59 p(σ′

N+1) += p′ # sum prefix prob. of (N+1)th character
60 return p/Z # Z = −→pΣ(σ)
O(n logK) heap-based strategy. In practice, K is small enough that this is not an important detail. However,
we sought to clarify why there is no log factor in our running time-bound. We also note that the cost of hashing
a sequence of length N can be amortized to constant time in this pseudocode using the hashconsing pattern
(see, Goubault, 1994, for an overview).

11

Preprint

3.4 CONDITIONAL GENERATION p∆|Σ(δ | σ)

This section gives a simple algorithm for correctly generating a token string Y that has a given
character-level prompt σ as its prefix. This algorithm is equivalent to the algorithm in the introduction
but significantly faster.

The algorithm works by enumerating the covering C(σ), drawing a token string from it in proportion
to its prefix probability, and finishing the token string by sampling a completion, which can be done
from the token-level model.

61 def conditional_token_generation(σ):
62 Z = −→pΣ(σ)
63 # Sample from the covering
64 δ′ ∼ Categorical({δ′ : p′/Z for (p′, _, δ′) in enumerate_cover(σ)})
65 return sample_completion(δ′)

66 def sample_completion(δ′):
67 δ′′ ← ε
68 while True:
69 δ ∼ −→p∆(· | δ′·δ′′)
70 if δ = EOS: break
71 δ′′ ← δ′′·δ
72 return δ′·δ′′

The following proposition shows that the samples generated by the algorithm correctly condition on
any character string prefix:
Proposition 2. The algorithm conditional_token_generation(σ) generates Y ∼ p∆|Σ(· | σ)
for all σ ∈ Σ∗.

Proof (Sketch). Choose an arbitrary δ ∈ ∆∗.
p∆|Σ(δ | σ) = P

Y∼p∆

[Y = δ |κ(Y) ⪰ σ] (23)

= p∆(δ)
1{κ(δ) ⪰ σ}
P

Y∼p∆

[κ(Y) ⪰ σ]
(24)

= p∆(δ)
1{κ(δ) ⪰ σ}
−→pΣ(σ)

(25)

Let δ′ = ϕσ(δ) (i.e., the shortest prefix of δ such that κ(δ′) ⪰ σ). Choose δ′′ such that δ′·δ′′ = δ.

= −→p∆(EOS | δ′·δ′′)−→p∆(δ′′ | δ′)︸ ︷︷ ︸
sample completion

−→p∆(δ′)
1{κ(δ′) ⪰ σ}
−→pΣ(σ)︸ ︷︷ ︸

sample from covering

(26)

We can see that the algorithm samples from this distribution because it samples a token string δ′ from
the covering in proportion to the right factor in Eq. (26) and then samples a completion δ′′ of δ′ in
proportion to the left factor of the equation. Thus, the sample δ = δ′·δ′′ has probability p∆|Σ(δ | σ),
and conditional_token_generation(σ) is a correct sampling procedure for it. ■

We also note the following corollary, as it gives an interpretation for the categorical distribution in the
efficient conditional_token_generation algorithm.
Corollary 1. For all σ ∈ Σ∗, δ ∈ ∆∗,

P
Y∼p∆

[ϕσ(Y) = δ |κ(Y) ⪰ σ] =
−→p∆(δ)
−→pΣ(σ)

1{δ ∈ C(σ)} (27)

Thus, we have provided an efficient solution to the prompt boundary problem. We also note that
generating from pΣ a character at a time is also a correct solution to the prompt boundary problem;
however, it is slower because it does not benefit from the fact that the generated string is shorter in
token space. This is because once the minimally covering token string has been sampled, the method
sample_completion will generate a complete sequence more efficiently than the character-at-a-time
sample algorithm, as it does not have the overhead of marginalization that −→pΣ(· | ·) does.

12

Preprint

4 EXPERIMENTS

In this section, we investigate our proposed algorithm’s running time and accuracy.

Setup.

• We use Llama 3.1 8B (Dubey et al., 2024) and GPT2 large (Radford et al., 2019) from the
transformers library (Wolf et al., 2020). Both models were trained over token strings created

from byte-pair encoding (BPE; Sennrich et al. (2016); Gage (1994)).
• We use the wikitext-103-v1 corpus as a source of character strings; we used the version in the

datasets library. Specifically, we use the test portion.
• We use (Kwon et al., 2023) to perform the efficient, batched evaluation of transformer

language models on GPUs. We batch the evaluation of all sequence extensions. All experiments
were run an A100 GPU with 80GB of memory.

• Our implementation uses a trie to represent all items in each bucket efficiently (see App. B). We
use the bucket-based pruning heuristic described in §3.

In the discussion below, let N denote |σ| and let K denote the beam-size parameter.

Error vs. speed. To better understand the quality of the approximation that our method provides,
we perform the following experiment. We use a large beam K = 128 as a reference model, and we
measure the average per-character Jensen-Shannon distance (JSD) to the reference model’s conditional
distribution over the next character. The table below shows the average JSD between the character-
level conditional distributions with beam sizes K ∈ {4, 8, 16, 32, 64} and the reference model.17

The average is computed across the first 4000 characters of the wikitext-103-v1 test corpus. To
quantify the speed of our method, we show the number of characters per second for each value of
K, including the reference model.18 In parentheses, we provide a 95% confidence interval computed
using bootstrapping. To aid in interpretation, we also show the same information graphically below.

GPT2 large Llama 3.1 8B
K average JSD / char char / sec average JSD / char char / sec

4 0.00330 (0.00235, 0.00435) 47.51 (46.86, 48.17) 0.00021 (0.00008, 0.00041) 46.31 (45.82, 46.82)
8 0.00075 (0.00053, 0.00102) 28.45 (27.99, 28.94) 0.00008 (0.00006, 0.00010) 29.45 (29.03, 29.87)

16 0.00040 (0.00020, 0.00064) 15.23 (14.94, 15.54) 0.00004 (0.00003, 0.00005) 15.37 (15.13, 15.62)
32 0.00009 (0.00005, 0.00015) 7.90 (7.74, 8.06) 0.00005 (0.00004, 0.00006) 7.55 (7.42, 7.69)
64 0.00002 (0.00001, 0.00003) 3.88 (3.80, 3.96) 0.00003 (0.00003, 0.00003) 3.77 (3.70, 3.84)
128 (not applicable) 1.81 (1.77, 1.85) (not applicable) 1.90 (1.87, 1.94)

Discussion. As expected, we observe that the character per second decreases with K. We observe
an inverse relationship between error (JSD) and speed (chars/sec): as the processing speed (charac-
ters/sec) decreases, the JSD also decreases. Notably, this tradeoff is non-linear, with JSD increasing

17We note that if the beam size is too small, it is possible for the beam summing procedure to hit a dead end
where no extension of the token sequences on the beam exist that match the next character of the input string.
Indeed, for the very small beam size of K = 2, GPT2-large hits such a dead end after approximately 1700
characters; Llama 3.1 8B, on the other hand, manages to successfully complete the whole corpus with K = 2.

18Since the running time is linear, we can gain a good understanding of the total running time to process a string
of any length N based on the measurement of the average characters per second.

13

Preprint

more sharply at higher processing speeds compared to lower speeds. This trend is particularly evident
for Llama 3.1 8B, where the JSD stabilizes around K ≥ 8. This indicates diminishing returns
in reducing error as K gets large. We hypothesize that this occurs because the language model’s
probability mass is concentrated around a limited set of tokenizations, which are adequately covered
even with smaller beam sizes. A plausible explanation is that Llama 3.1 8B’s larger model and
training set size has made it better able to learn to assign much lower probabilities to non-canonical
tokenizations; thus, mass tends to be concentrated around fewer tokenizations, making it possible to
capture the distribution with a smaller value of K.

Comparing the two models, we observe that GPT2-large generally exhibits larger JSD from the
reference distribution compared to Llama 3.1 8B across all K, with the exception of K = 64. This
difference can be explained by GPT2-large spreading its probability mass across more tokenizations,
requiring larger K to cover all probable tokenizations.

5 CONCLUSIONS, LIMITATIONS, AND FUTURE WORK

We have developed an effective method for ameliorating tensions between tokens and characters
faced by engineers and users. We gave theory and algorithms that provide a character-level interface
to tokenized language models. We characterized and resolved the prompt boundary problem. We
investigated the empirical speed and error rates of our method on a modern language model.

The primary limitation of our beam summing method is that it will require a very large beam size
K when the language model does not favor a small number of tokenizations. The models that we
explored in our experiments concentrate mass on a few tokenizations; thus, we did not require large K
to estimate their character-level prefix probabilities accurately. Future work may wish to investigate
sampling-based estimation methods and possibly derive upper and lower bounds on the true values of
the character-level prefix probability.

ACKNOWLEDGMENTS

The authors would like to thank Andreas Opedal, Alex Lew, Jacob Hoover Vigly, Luca Malagutti,
Manuel de Prada Corral, and Vésteinn Snæbjarnarson for their helpful feedback and discussions. JT
would like to thank Rycolab for its hospitality during a recent visit. The authors JLG and JT would
like to thank Institut des Hautes Études Scientifiques (IHES) for their hospitality while revising this
paper. MG was supported by an ETH Zürich Postdoctoral Fellowship. This research was enabled in
part by compute resources provided by Mila (mila.quebec).

REFERENCES

Manuel Blum, Robert W. Floyd, Vaughan R. Pratt, Ronald L. Rivest, and Robert Endre Tarjan.
Time bounds for selection. Journal of Computer and System Sciences, 7(4), 1973. doi: 10.1016/
S0022-0000(73)80033-9. URL https://doi.org/10.1016/S0022-0000(73)80033-9.

Kris Cao and Laura Rimell. You should evaluate your language model on marginal likelihood over
tokenisations. In Proceedings of the Conference on Empirical Methods in Natural Language
Processing, 2021. doi: 10.18653/v1/2021.emnlp-main.161. URL https://aclanthology.org/
2021.emnlp-main.161.

Nadezhda Chirkova, Germán Kruszewski, Jos Rozen, and Marc Dymetman. Should you marginal-
ize over possible tokenizations? In Proceedings of the Annual Meeting of the Associa-
tion for Computational Linguistics, 2023. doi: 10.18653/v1/2023.acl-short.1. URL https:
//aclanthology.org/2023.acl-short.1.

Ryan Cotterell, Anej Svete, Clara Meister, Tianyu Liu, and Li Du. Formal aspects of language
modeling, 2024. URL https://arxiv.org/abs/2311.04329.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the Conference of the
North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, 2019. doi: 10.18653/v1/N19-1423. URL https://aclanthology.org/N19-1423.

14

https://doi.org/10.1016/S0022-0000(73)80033-9
https://aclanthology.org/2021.emnlp-main.161
https://aclanthology.org/2021.emnlp-main.161
https://aclanthology.org/2023.acl-short.1
https://aclanthology.org/2023.acl-short.1
https://arxiv.org/abs/2311.04329
https://aclanthology.org/N19-1423

Preprint

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Philip Gage. A new algorithm for data compression. C Users Journal, 12(2), 1994. ISSN 0898-
9788. URL https://web.archive.org/web/20230319172720/https://www.derczynski.
com/papers/archive/BPE_Gage.pdf.

Juan Luis Gastaldi, John Terilla, Luca Malagutti, Brian DuSell, Tim Vieira, and Ryan Cotterell.
The foundations of tokenization: Statistical and computational concerns, 2024. URL https:
//arxiv.org/abs/2407.11606.

Saibo Geng, Martin Josifoski, Maxime Peyrard, and Robert West. Grammar-constrained decoding for
structured NLP tasks without finetuning. In Proceedings of the Conference on Empirical Methods
in Natural Language Processing, 2023. URL https://aclanthology.org/2023.emnlp-main.
674.pdf.

Mario Giulianelli, Luca Malagutti, Juan Luis Gastaldi, Brian DuSell, Tim Vieira, and Ryan Cotterell.
On the proper treatment of tokenization in psycholinguistics. In Proceedings of the Conference on
Empirical Methods in Natural Language Processing, 2024. URL https://aclanthology.org/
2024.emnlp-main.1032.

Jean Goubault. Implementing functional languages with fast equality, sets and maps: An exercise in
hash consing. Journées Francophones des Langages Applicatifs, 1994.

John Hale. A probabilistic Earley parser as a psycholinguistic model. In Meeting of the North
American Chapter of the Association for Computational Linguistics, 2001. URL https://
aclanthology.org/N01-1021.pdf.

Terry Koo, Frederick Liu, and Luheng He. Automata-based constraints for language model decod-
ing. In Conference on Language Modeling, 2024. URL https://openreview.net/forum?id=
BDBdblmyzY.

Taku Kudo. Subword regularization: Improving neural network translation models with multiple
subword candidates. In Proceedings of the Annual Meeting of the Association for Computational
Linguistics, 2018. doi: 10.18653/v1/P18-1007. URL https://aclanthology.org/P18-1007.

Taku Kudo and John Richardson. SentencePiece: A simple and language independent subword
tokenizer and detokenizer for neural text processing. In Proceedings of the Conference on Empirical
Methods in Natural Language Processing: System Demonstrations, 2018. doi: 10.18653/v1/
D18-2012. URL https://aclanthology.org/D18-2012.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with PagedAttention. In Proceedings of the ACM SIGOPS Symposium on Operating
Systems Principles, 2023. URL https://arxiv.org/abs/2309.06180.

Roger Levy. Expectation-based syntactic comprehension. Cognition, 106(3), 2008. ISSN 0010-0277.
doi: https://doi.org/10.1016/j.cognition.2007.05.006. URL https://www.sciencedirect.com/
science/article/pii/S0010027707001436.

Scott Lundberg and Marco Tulio Ribeiro. The art of prompt design: Prompt bound-
aries and token healing. Medium, 2023. URL https://towardsdatascience.com/
the-art-of-prompt-design-prompt-boundaries-and-token-healing-3b2448b0be38.

Microsoft. Guidance. https://github.com/microsoft/guidance, 2023.

Tomáš Mikolov, Martin Karafiát, Lukáš Burget, Jan Černocký, and Sanjeev Khudanpur. Recur-
rent neural network based language model. In Proceedings of INTERSPEECH, 2010. doi:
10.21437/Interspeech.2010-343. URL https://www.isca-archive.org/interspeech_2010/
mikolov10_interspeech.html.

15

https://web.archive.org/web/20230319172720/https://www.derczynski.com/papers/archive/BPE_Gage.pdf
https://web.archive.org/web/20230319172720/https://www.derczynski.com/papers/archive/BPE_Gage.pdf
https://arxiv.org/abs/2407.11606
https://arxiv.org/abs/2407.11606
https://aclanthology.org/2023.emnlp-main.674.pdf
https://aclanthology.org/2023.emnlp-main.674.pdf
https://aclanthology.org/2024.emnlp-main.1032
https://aclanthology.org/2024.emnlp-main.1032
https://aclanthology.org/N01-1021.pdf
https://aclanthology.org/N01-1021.pdf
https://openreview.net/forum?id=BDBdblmyzY
https://openreview.net/forum?id=BDBdblmyzY
https://aclanthology.org/P18-1007
https://aclanthology.org/D18-2012
https://arxiv.org/abs/2309.06180
https://www.sciencedirect.com/science/article/pii/S0010027707001436
https://www.sciencedirect.com/science/article/pii/S0010027707001436
https://towardsdatascience.com/the-art-of-prompt-design-prompt-boundaries-and-token-healing-3b2448b0be38
https://towardsdatascience.com/the-art-of-prompt-design-prompt-boundaries-and-token-healing-3b2448b0be38
https://github.com/microsoft/guidance
https://www.isca-archive.org/interspeech_2010/mikolov10_interspeech.html
https://www.isca-archive.org/interspeech_2010/mikolov10_interspeech.html

Preprint

Byung-Doh Oh and William Schuler. Leading whitespaces of language models’ subword vocabulary
poses a confound for calculating word probabilities, 2024. URL https://arxiv.org/abs/2406.
10851.

Buu Phan, Marton Havasi, Matthew J. Muckley, and Karen Ullrich. Understanding and mitigating
tokenization bias in language models. In ICML Workshop on Theoretical Foundations of Foundation
Models, 2024. URL https://openreview.net/forum?id=OqfdrBj1y1.

Tiago Pimentel and Clara Meister. How to compute the probability of a word, 2024. URL https:
//arxiv.org/abs/2406.14561.

Gabriel Poesia, Alex Polozov, Vu Le, Ashish Tiwari, Gustavo Soares, Christopher Meek, and Sumit
Gulwani. Synchromesh: Reliable code generation from pre-trained language models. In The Tenth
International Conference on Learning Representations, ICLR 2022, Virtual Event, April 25-29,
2022. OpenReview.net, 2022. URL https://openreview.net/forum?id=KmtVD97J43e.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Lan-
guage models are unsupervised multitask learners. OpenAI blog, 1(8), 2019. URL https:
//d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf.

Torsten Scholak, Nathan Schucher, and Dzmitry Bahdanau. PICARD: parsing incrementally for
constrained auto-regressive decoding from language models. In Proceedings of the Conference
on Empirical Methods in Natural, 2021. doi: 10.18653/V1/2021.EMNLP-MAIN.779. URL
https://doi.org/10.18653/v1/2021.emnlp-main.779.

Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural machine translation of rare words
with subword units. In Proceedings of the Annual Meeting of the Association for Computational
Linguistics, 2016. doi: 10.18653/v1/P16-1162. URL https://aclanthology.org/P16-1162.

Claude E. Shannon. A mathematical theory of communication. The Bell System Technical Journal,
27(4), 1948. URL https://doi.org/10.1002/j.1538-7305.1948.tb00917.x.

Martin Sundermeyer, Hermann Ney, and Ralf Schlüter. From feedforward to recurrent LSTM neural
networks for language modeling. IEEE/ACM Transactions on Audio, Speech, and Language
Processing, 23(3), 2015. URL https://ieeexplore.ieee.org/document/7050391.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in Neural Information Processing
Systems, 30, 2017. URL https://arxiv.org/abs/1706.03762.

Brandon T. Willard and Rémi Louf. Efficient guided generation for large language models. CoRR,
abs/2307.09702, 2023. doi: 10.48550/ARXIV.2307.09702. URL https://doi.org/10.48550/
arXiv.2307.09702.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Remi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick
von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger,
Mariama Drame, Quentin Lhoest, and Alexander Rush. Transformers: State-of-the-art natural
language processing. In Proceedings of the Conference on Empirical Methods in Natural Language
Processing: System Demonstrations, 2020. doi: 10.18653/v1/2020.emnlp-demos.6. URL https:
//aclanthology.org/2020.emnlp-demos.6.

16

https://arxiv.org/abs/2406.10851
https://arxiv.org/abs/2406.10851
https://openreview.net/forum?id=OqfdrBj1y1
https://arxiv.org/abs/2406.14561
https://arxiv.org/abs/2406.14561
https://openreview.net/forum?id=KmtVD97J43e
https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf
https://doi.org/10.18653/v1/2021.emnlp-main.779
https://aclanthology.org/P16-1162
https://doi.org/10.1002/j.1538-7305.1948.tb00917.x
https://ieeexplore.ieee.org/document/7050391
https://arxiv.org/abs/1706.03762
https://doi.org/10.48550/arXiv.2307.09702
https://doi.org/10.48550/arXiv.2307.09702
https://aclanthology.org/2020.emnlp-demos.6
https://aclanthology.org/2020.emnlp-demos.6

Preprint

A THE SIZE OF THE COVERING

We now set about to bound the worst-case size of the covering function. To do so, we introduce
additional definitions that characterize the different growth factors.

We define the κ’s fertility as

F def= max
δ∈∆∗

max
σ∈Σ∗

|{δ′ ∈ ∆: σ = κ(δ·δ′)}| ≤ |∆| (28)

Example 4. The BPE tokenizer has FBPE = 1 because it is multiplicative, and its tokens represent
distinct substrings. More formally,

FBPE = max
δ∈∆∗

max
σ∈Σ∗

|{δ′ ∈ ∆: σ = κ(δ·δ′)}| [def of fertility] (29)

= max
δ∈∆∗

max
σ∈Σ∗

|{δ′ ∈ ∆: σ = κ(δ)·κ(δ′)}| [def multiplicativity] (30)

= |{δ′ ∈ ∆: σ′ = κ(δ′)} [def function] (31)
= 1 [distinctness] (32)

Additionally, we define a κ’s munch as follows.

M def= max
δ∈∆∗

max
δ∈∆
|κ(δ·δ)| − |κ(δ)| (33)

In words, the munch measures the length of the largest number of characters that can be introduced
by adding one more token to any given context.
Example 5. The munch of a multiplicative κ, such as BPE, is maxδ∈∆ |κ(δ)|. Put in words, it is the
length of the longest detokenization. The munch for GPT-2 is surprisingly long (128), as they are
common in, for example, markdown syntax.

Proposition 3. Let F and M be the fertility and munch of κ. Then, for all σ ∈ Σ∗,
|C(σ)| ≤ C(|σ|) (34)

where

C(n) def=

0 if n < 0

1 if n = 0

F

n−1∑
j=n−M

C(j) otherwise)
(35)

Proof. The base cases N ≤ 0 are straightforward. Consider the case of a string of length N ≥ 0.
Inductive hypothesis: Suppose for all strings σ′ with |σ′| < N , |C(σ′)| ≤ C(|σ′|).
Let σ be an arbitrary string with length N > 0.

|C(σ1 ··· σN)| (36)

=
∣∣{δ·δ ∈ ∆+ : κ(δ) ≺ σ1 ··· σN ⪯ κ(δ·δ)

}∣∣ (37)

=

∣∣∣∣∣∣∣
N⋃
j=0

{
δ·δ ∈ ∆+ : κ(δ) = σ1 ··· σj , σ1 ··· σN ⪯ κ(δ·δ)

}︸ ︷︷ ︸
=∅ if N−(j+1)>M or N=j+1

∣∣∣∣∣∣∣ (38)

≤
N−1∑

j=N−M

∣∣∣∣∣∣∣{δ ∈ ∆∗ : κ(δ) = σ1 ··· σj}︸ ︷︷ ︸
⊆C(σ1···σj)

∣∣∣∣∣∣∣ · |{δ ∈ ∆: δ ∈ ∆∗, σ1 ··· σN ⪯ κ(δ·δ)}|︸ ︷︷ ︸
≤F

(39)

≤ F ·
N∑

j=N−M

|C(σ1 ··· σj)|︸ ︷︷ ︸
inductive hypothesis

(40)

≤ F ·
N∑

j=N−M

C(j) (41)

= C(N) (42)
Thus, the proposition holds true by the principle of induction. ■

17

Preprint

Corollary 2. Let N = |σ|. Consider the following cases:

• When M = N and F = 1, C(N) = 2N .
• When M = N and F ≥ 0, C(N) = F (1 + F)N .
• Otherwise, C(N) = FNFib(N,M) where Fib(N,M) is N th M th-order Fibonacci number.19

In all cases, CF
M (N) <∞.

In the proposition below, we show that the covering can easily be exponential in size:
Proposition 4.

|C(σ)| ∈ Ω(2|σ|) (43)

Proof. We prove the proposition by constructing an example that achieves the lower bound.

• Let Σ = {a}, ∆ =

{
a
1,

aa
2

}
.

• Let κ be multiplicative, and define κ(
a
1)

def= a, κ(
aa
2)

def= aa.
• Let σ be an arbitrary string from Σ∗. Let N = |σ|.
Then, |E(σ)| equals the number of nonnegative integer solutions (n,m) to 1m + 2n = N . This

is because we can build the aN using a sequence of a
1 or aa

2 , but each a
1 accounts for 1 a and each aa

2

accounts for 2. So if n is the number of token 1 and m is the number of token 2, we must have that
1m+ 2n = N . The number of solutions grows like Ω(2N). Lastly, because C(σ) ⊇ E(σ), we have
that |C(σ)| ∈ Ω(2|σ|). Thus, the proposition holds. ■

19M th-order Fibonacci numbers are a variation of the well-known Fibonacci (i.e., M = 2) that sums the previous
M numbers in the sequence instead of the previous two.

18

Preprint

B BUNDLED BEAM SUMMING IMPLEMENTATION

Upon implementing this scheme, we observed that it is possible to efficiently reason about all the
next tokens that extend a given token sequence in the cover in bulk. The key idea is to group the
token sequences that fall into the same bucket in prune_top_K_buckets into a Bundle (see below)
that represents them compactly. In particular, we can use a probability trie to efficiently filter out the
next tokens that disagree with the next character. This improves the per-iteration cost of that filter as
it can via the data structure, as it does the organizational work ahead of time in bulk. We can regard
the probability trie as a local language model that generates the next token character-by-character
according to the probability assigned to it by −→p∆(· | δ). Each bundle can be unbundled (see method
unbundle) into the respective tuples that the enumerate_cover algorithm maintains. The algorithms
are otherwise equivalent.

73 def beam(σ1 ··· σN):
74 if N = 0: return [Bundle(1, ε, ε, build_trie(ε))]
75 candidates = []
76 for bundle in beam(σ1 ··· σN−1):
77 filtered_bundle = bundle.filter(σN)
78 if filtered_bundle is not None:
79 candidates.append(filtered_bundle)
80 for extended_bundle in bundle.extend():
81 candidates.append(extended_bundle.filter(σN))
82 # Keep top-K bundles according to their prefix probability
83 return topK(candidates, key=lambda bundle: -bundle.p)

Each bundle is an instance of the following class with four member variables: the prefix probability
p, token string δ, character string σ, and a reference to a local probability trie trie . The trie provides
the character-level probabilities of the distribution over possible next tokens: p∆(· | δ). The trie is
also augmented with a special symbol EOT to denote the end of this next token.20

84 class Bundle(p, δ, σ, trie):
85

86 def filter(σ′):
87 if trie.p(σ′ | σ) = 0: return # no tokens give prefix σ·σ′ prob
88 return Bundle(p · trie(σ′ | σ), δ, σ·σ′, trie)
89

90 def extend():
91 Z = trie.p(EOT | σ)
92 if Z > 0: # emit tokens that decode to σ
93 for (δ′, p′) in trie.tokens[σ]:
94 yield Bundle(p

Z · p
′, δ·δ′, ε, build_trie(δ·δ′))

The code below builds the probability trie from the possible next tokens. It figures out the character
strings associated with those next tokens and puts them into the trie with the respective probabilities.21

95 def build_trie(δ):
96 σ = κ(δ) # remember common prefix
97 trie = ProbabilityTrie() # uses EOT to mark the end of a token
98 for δ′ ∈ ∆:
99 σ·σ′ = κ(δ·δ′) # use new characters, i.e., ignore prefix σ

100 trie.add(σ′, δ′, p∆(δ
′ | δ)) # add σ′ and δ′ to trie with this probability

101 return trie

The probability trie has the following functionality:

• trie.tokens[σ′] stores the set of tokens that decode to σ′ along with their respective.

20This is completely analogous to how EOS marks the end of a string.
21Note that EOS is handled as an indivisible symbol in the probability trie, whereas other strings are predicted

one character at a time in the trie.

19

Preprint

• trie.p(σ′ | σ) returns the probability of the character σ′ given σ, it is equal to

trie.p(σ′ | σ) ∝
∑
δ′∈∆

p∆(δ
′ | δ)

{
1{κ(δ·δ′) = σ} if σ′ = EOT

1{κ(δ·δ′) ⪰ σ·σ′} otherwise
(44)

We note that the trie implicitly depends on the token string δ used in its creation.

To aid in understanding (and testing) how the bundled algorithm relates to the original algorithm, we
give the following methods.

102 class Bundle(p, δ, σ, trie):
103 ...
104 def unbundle():
105 agenda = [σ]
106 while agenda:
107 σ′ = agenda.pop()
108 Z = trie.p(EOT | σ)
109 if Z > 0:
110 for (δ′, p′) ∈ trie.tokens[σ′]:
111 yield (p · p′, κ(δ·δ′), δ·δ′)
112 for σ′′ in trie.p(· | σ′):
113 if σ′′ ̸= EOT:
114 agenda.append(σ′·σ′′)

115 def unbundle_beam(beam):
116 return [item for bundle in beam for item in bundle.unbundle()]

We note that unbundle_beam(beam(σ)) gives precisely the same set of elements as the unbundled
algorithm (i.e., enumerate_cover(σ)) run on the same string σ and the bucket-based pruning
scheme with parameter K (up to reordering).

To compute the next-character probability, we use the following algorithm:

117 def next_character_probability(σ):
118 p = {σ′: 0 for σ′ ∈ Σ ∪ {EOS}}
119 for bundle in beam(σ):
120 for σ′ ∈ Σ:
121 p(σ′) += bundle.p · bundle.trie.p(σ′ | bundle.σ)
122 for ext_bundle in bundle.extend():
123 for σ′ ∈ Σ:
124 p(σ′) += ext_bundle.p · ext_bundle.trie.p(σ′ | ext_bundle.σ)
125 Z = sum(p.values())
126 return {σ′: p(σ′)/Z for σ′ ∈ Σ}

20

