
Boole’s untruth tables

The formal conditions of meaning
before the emergence of propositional logic

Juan Luis Gastaldi

Abstract

This paper looks into what can reasonably be regarded as truth-table
devices in one of Boole’s late manuscripts, as a way of addressing Boole’s
relation to modern propositional logic. A careful investigation of the diver-
gences between those table devices and our current conception of truth
tables offers an opportunity to reassess the singularity of Boole’s logi-
cal system, especially concerning the relation between its linguistic and
mathematical aspects. The paper explores Boole’s conception of the com-
positional structure of symbolic expressions, the genesis of table devices
from his method of development into normal forms, and the non-logical
origin of the constants 0 and 1 as dual terms. Boole’s system of logic is
in this way shown to be chiefly concerned with the problem of the formal
interpretability conditions of symbolic expressions, rather than with the
truth conditions of logical propositions.
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Introduction

The introduction of truth tables in the study of logic bears a special historical
significance. Indeed, truth tables have played a decisive role in securing the
foundations of the whole logical edifice, providing the means for the first proofs
of completeness and consistency for the propositional fragment of logical sys-
tems, helping to generalize their properties and perspectives, and contributing
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to establishing a conception of logical thought as chiefly oriented by the formal
treatment of the truth conditions of logical propositions.1

Associated with that event is the pioneering work of George Boole. Although
it is agreed that no actual truth-table device was explicitly drawn by Boole, the
essential ideas later associated with the emergence and uses of truth tables are
frequently recognized as stemming in one way or another from his work. In
the next pages, I shall challenge that received view by suggesting that Boole
did indeed present what can be considered as truth-table devices, but that, at
the same time, such devices cannot be correctly understood in propositional
and truth-theoretical terms, and ask for a different interpretation of the nature
of Boole’s logical endeavor. I will first examine Boole’s place in the existing
literature on the history of truth tables, focus next on the different aspects of
the singularity of Boole’s system with respect to modern propositional logic,
and finally thereby explain the original meaning of Boole’s table devices.

1 The place of Boole in the history of truth
tables

The precise moment of the introduction of truth tables in the history of logic,
and the person to be credited for their invention, has been the object of some de-
bate in recent decades. The received history points invariably to the years 1920-
22, when explicit truth tables were proposed and used simultaneously by Post
Post (1921), Wittgenstein Wittgenstein (2001) and  Lukasiewicz  Lukasiewicz
(1921), who in turn recognized sources of inspiration in Frege, Schröder, Venn,
Jevons and Boole. This origin has already been suggested by Quine (Van Or-
man Quine, 1966, p. 27) and Anscombe (Anscombe, 1963, p. 23), being some-
what endorsed by William and Martha Kneale, who nevertheless make addi-
tional efforts to link this emergence to the works of Boole and Frege (Kneale
and Kneale, 1971, p. 532).

However, in 1997, Shosky Shosky (1997) discovered some handwritten com-
ments by Wittgenstein on the back of one of Russell’s manuscripts, suggesting
that both logicians were certainly discussing and working with explicit truth
tables as early as 1912. Shosky’s article, which also addresses the roles of Frege
and Boole as precursors of truth tables, is not only significant for that particular
discovery, but also because it proposes a conceptual framework for a rigorous
historical study of the question, from which philosophical consequences can
be drawn. In particular, Shosky advanced the fruitful distinction between the
truth-table technique and the truth-table device, the former pointing to “the
logical process of examining all truth values for a proposition”, the latter re-
ferring instead to “the mechanical creation of vertical columns of possibilities,
measured against horizontal rows of logically exhaustive options” (Shosky, 1997,
p. 13).

Following Shosky’s positioning of the problem, Anellis Anellis (2004, 2012)
provided evidence to support the idea that credit for the introduction of the first
truth-table device should be granted to Peirce, who had presented several ways

1See, for instance, Gödel’s recently published 1939 logic course at Notre Dame Adzic and
Dosen (2017), which constitutes a flawless account of the historical, conceptual and technical
significance of truth tables for the understanding and development of propositional logic.
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of dealing with truth values through matrices in texts and manuscripts, years
and even decades before the notes of Russell and Wittgenstein discovered by
Shosky.2 In Anellis and Abeles (2016), Anellis also refers to Dogson (Lewis Car-
roll) as having worked with incomplete truth tables, following Bartley’s account
in his edition of Carroll (1986).

Significantly, apart from a few references to premodern logicians, as well as
to Frege regarding truth-table techniques, the emergence of a truth-table device
appears as deeply rooted in the Boolean tradition of logic. In effect, Jevons,
Venn, Carroll, Schröder, Peirce and even Russell3 were all openly engaged in
perfecting and expanding the logical system first introduced by Boole in his
seminal treatise The Mathematical Analysis of Logic (hereafter MAL) Boole
(2009), and later developed in his most celebrated work The Laws of Thought
(hereafter LT) Boole (1854). Moreover, there are solid conceptual reasons to
believe that the decisive development of propositional logic that took place
around the 1920s is intimately connected with Boole’s pioneering conception
of logic. Indeed, truth tables bear an internal link to Boolean algebra, logical
propositions rely on a generalization of Boolean connectives such as “and”,
“or” and “not”, and the computable aspects of propositional calculus assured
by truth tables can be carried out through a binary arithmetic, composed only
of 0 and 1, of which Boole is known to have provided the first rudiments as
part of his logical calculus. For those reasons, the historical account of truth
tables implicitly or explicitly points to Boole’s original system as containing, in
some essential sense, the principles underlying truth-table devices. At the same
time, the clear absence of truth-table devices in Boole’s principal works forces
one to think that Boole’s own formulations remain in some way insufficient to
necessitate the introduction of those devices as such, so that they could only be
introduced by his followers, once his system had been conveniently elaborated.

Among the studies concerned with the history of truth tables, that of W. and
M. Kneale presents the most explicit argument putting forward the importance
of Boole’s work for later developments. In their view, Boole’s main achieve-
ment in this sense is given by his theory of elective functions, which should
be understood as a theory of truth functions, only “a short step” away from
“Frege’s use of truth-tables (i.e. tabulations of alternative truth-possibilities)
in his Begriffsschrift of 1879” (Kneale and Kneale, 1971, p. 420). Their claim
is based on a combination of two aspects of Boole’s formulations. The first of
them is given by Boole’s suggestion in MAL and LT to consider the algebraic—
or “elective”—symbols x, y, z... of his system as admitting only the values 1
and 0, which could be interpreted upon certain occasions as meaning that the
propositions X, Y, Z... are, respectively, true or false. For the authors, this
provides “all that is needed for an interpretation of Boole’s system in terms of
the truth-values of propositions with the symbols 1 and 0 standing respectively
for truth and falsity” (Kneale and Kneale, 1971, p. 413).

However, that circumstance alone is not enough to attest the existence of
a truth-table technique in Boole’s work. This is certainly the reason why the

2See Grattan-Guinness (2004) for Grattan-Guinness’s argument in favor of Shosky’s posi-
tion.

3Unlike the rest of the names in this list, Russell’s relation to the Boolean tradition was
not direct, but mediated in a decisive way by Peano’s original elaboration, which, in turn,
explicitly relies on the formulations of Boole, Schröder and Peirce (see Russell’s (Russell, 2010,
§2) and Peano’s (Peano, 1973, §§vii, xii, xvi, xvii, xxi)).
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authors bring up a second aspect in the work of the English logician, namely
his method of expressing secondary (i.e. hypothetical) propositions by alge-
braic symbols, especially in MAL, where Boole presents the following “scheme”
(Boole, 2009, p. 50):

Cases. Elective expressions.

1st X true, Y true . . . . . . . . . . . . xy
2nd X true, Y false . . . . . . . . . . . . x(1 − y)
3rd X false, Y true . . . . . . . . . . . . (1 − x)y
4th X false, Y false . . . . . . . . . . . . (1 − x)(1 − y)

(1)

Like the first, that second element alone cannot be thought to contain the
fundamental principles of truth tables, since this tabular array only intends to
present the way of expressing secondary propositions in the system, and does
not provide the means to compute their truth or falsity. In other words, Boole’s
schema is supposed to work as a dictionary rather than as a truth-table device.
For the former to work as the latter, the algebraic or computable properties
of the expressions in the last column should be determined in some essential
way by a combinatorial treatment of truth values. This is what the first aspect
considered by W. and M. Kneale could provide.

As close to each other as those two elements may appear from our con-
temporary perspective, their connection in Boole’s work does not seem to be
necessary, to an extent that Boole not only never integrates them in his two ma-
jor works, but, as the authors correctly acknowledge, he even abandons in LT
the direct correspondence between algebraic expressions and the truth values of
propositions that seems to motivate the table (1), in favor of an interpretation
of symbols such as x in terms of the time during which a proposition X is true
(Boole, 1854, XI).4 W. and M. Kneale cannot but see in Boole’s withdrawal from
a truth-theoretical conception of logic a “return to an unsatisfactory account
of truth put forward by some ancient and medieval logicians”, blaming meta-
physical and theological influences on the logician (Kneale and Kneale, 1971,
p. 414).5 Their guess is that Boole is preparing a logic, not of truth and falsity,
but of necessity and impossibility. In this way, the Kneales’ interpretation could
explain why Boole did not go so far as to develop modern truth tables, although
he introduced the basic principles of a modern truth-theoretical understanding
of logical propositions that would make it easy for his followers to take that
“short step”.

Although W. and M. Kneale’s reading can illuminate the positive relation
between Boole’s work and truth tables, the reasons that we can draw from it
to explain the absence of truth tables in Boole are rather unconvincing. In
contrast, Shosky’s analysis provides, in my view, the best existing account of
the conditions preventing truth-table devices from actually emerging within
Boole’s system. While recognizing the principles of a truth-table technique in

4For Boole’s temporal interpretation of secondary propositions, see Godart-Wendling
(2000).

5It is hardly surprising, from this point of view, that the connection of secondary proposi-
tions with the theory of probabilities, which occupies more than a third of LT, appears to the
authors as “obscure” (Kneale and Kneale, 1971, p. 414). For a treatment of Boole’s theory of
probabilities, see Hailperin (1986); Durand-Richard (2012).
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Boole’s use of 1 and 0 in LT, Shosky correctly notes that those principles are
independent from Boole’s tabular arrays such as (1): “Boole did not himself
combine the truth-table technique with his use of [an] embryonic truth-table
device. [...] it is surprising that he developed both techniques independently...”
(Shosky, 1997, p. 14). Yet after acknowledging this circumstance, Shosky affirms
that their combination into a unified powerful tool is indeed not necessary in
Boole’s system, since the existence of truth tables as we now know them is, in
fact, related to the definitional conditions of material implication and material
equivalence, two components that do not really find a place in Boole’s work.
Relying on that argument, Shosky concludes his analysis of Boole’s place in the
history of truth tables suggesting that “[i]f someone could demonstrate Boole’s
reliance on a truth-table device to develop his logical system, then Boole would
have to be given credit for initiating the advance to the new logic with an even
greater insight than his discovery of Boolean Algebra or the existential fallacy.”
(Shosky, 1997, p. 16).

We can leave aside for the moment the fact that the use of truth tables at-
tributed to Frege by the Kneales is more than questionable, and that Shosky’s
direct association of Boolean algebra with Boole is, in fact, inaccurate.6 As we
will show, the understanding of Boole’s use of 0 and 1 as informed by a truth-
functional approach or a truth-table technique will also need to be challenged.
However, what is certainly more significant when considering Boole’s relation
to truth tables is that those and other accounts of the possibility and impossi-
bility of truth tables in his work overlook a decisive circumstance, namely that
what can reasonably be considered as truth-table devices are in fact present in
the work of Boole. If they did not appear in the debates around the history of
truth tables, it is certainly because those devices can be found not in Boole’s
main published logical works but in a manuscript belonging to the years that
followed the publication of LT. In those pages, entitled “On the Foundations
of the Mathematical Theory of Logic and on the Philosophical Interpretation
of Its Methods and Processes”, the logician goes back over the formulation of
LT in order to provide a condensed version of his system in no way lacking
in originality compared with previous presentations.7 Under the “Symbolical
expression of the formal laws of logic” section of that manuscript, we can find
the following three passages:

p. 92:

...the condition xy = 0 demands that the values of x and y should
be so chosen that their product should vanish. And this restricts
the actual selection to the following pairs of values viz.:

1st x = 1 y = 0
2nd x = 0 y = 1
3rd x = 0 y = 0

6See the introduction to section 2 below.
7Extracts from this manuscript were published in 1952 by Rhees in Rhees (1952), but the

editor, manifestly interested above all in Boole’s perspective on the problem of reasoning,
skipped the section containing the “tables” in question, mentioning only that “[t]he logical
symbolism is the same as in the Laws of Thought” (Rhees, 1952, p. 238). The publication
of the entire document had then to await Grattan-Guinness and Bornet’s edition of Boole’s
manuscripts in 1997 Grattan-Guiness and Bornet (1997), the same year as Shosky’s paper.
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and excludes the combination x = 1 y = 1.

p. 92-93:

y(1 − x) = 0

Logically interpreted this condition demands that there should exist
no individuals in the class y which are not found in the class x. [...]
Interpreted in the dual Algebra it would permit the combinations

x = 1 y = 1
x = 1 y = 0
x = 0 y = 0

and excludes the combination

x = 0 y = 1

p. 93:

x(1 − y) = 0

Logically interpreted this demands the non-existence of the class
whose members belong to the class x and not to the class y. [...]
Interpreted in dual Algebra it permits the combinations

x = 1 y = 1
x = 0 y = 1
x = 0 y = 0

and excludes the combination

x = 1 y = 0

From a contemporary point of view, those three passages unequivocally
present the truth tables for the propositions we would nowadays write:
¬(x ∧ y), ¬(¬x ∧ y) and ¬(x ∧ ¬y), corresponding to the expressions xy = 0,
y(1 − x) = 0 and x(1 − y) = 0 in Boole’s system. If one is permitted to ex-
press the combinations “selected” or “permitted” by 1 and those “excluded” by
0, then Boole’s tabular arrays could be rearranged without much effort in the
following standard truth-table way:

x y ¬(x ∧ y) ¬(¬x∧ y) ¬(x∧¬y)
1 1 0 1 1
1 0 1 1 0
0 1 1 0 1
0 0 1 1 1
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The two different aspects of Boole’s system that historical accounts identified
as motivating its possible relation to truth tables enable an assessment of the
relevance of the tables drawn by Boole in his manuscript. Those tables show
not only that both dimensions are not independent in Boole’s system, but that
they are actually combined in his work. Indeed, the pages in question integrate
Boole’s regular use of a tabular device8, with the exhaustive combinations of 0
and 1 by which the truth of a given compound logical expression can be (and is
indeed) computed. Boole’s remarks concerning those novel tabular arrays leave
no room for doubt concerning his conscious intention of integrating these two
dimensions of his system:

It appears then that there exists a perfect formal identity between
Logic represented by symbols [...] and the dual Algebra [...]. Upon
this identity the methods developed in the Laws of Thought are
founded. I have not however in that treatise so fully considered the
grounds of the relation upon which its methods rest as I have done
in the previous sections of this paper. (Grattan-Guiness and Bornet,
1997, p. 94)

In other words, Boole’s expression of logical propositions through elective
symbols motivating tabular arrays, and his use of 1 and 0 in the form of a
dual algebra allowing computations over those symbols, are formally one and
the same thing. What is more, this identity necessitates recourse to a novel
tabular device bearing all the elementary properties usually attributed to truth
tables, even if they only appear here as embryonic principles in need of further
adjustment and systematization. This evidence would suggest that Boole’s place
in the history of truth tables, and more generally, in initiating the “advance to
a new logic”, needs to be reassessed, as suggested by Shosky, and the conditions
usually associated with the emergence of truth tables would need to be made
compatible with those motivating Boole’s pioneering arrays.

Significantly, however, the difficulty those tables present resides elsewhere.

2 Boole’s singular system

The hitherto unnoticed presence of table devices in Boole’s work could certainly
reinforce the picture of Boole as the father of modern formal logic. This picture,
sketched at the beginning of the previous section, is composed of three main
features, each of them defining in a decisive way a specific aspect of modern
logical thought. First, Boole would have provided a novel formal language to
logic, given by a system of logical propositions structured as a Boolean algebra,
in which ∧, ∨, and ′ are respectively interpreted as the truth functional logical
connectives of conjunction, disjunction and negation. Second, he would have
conceived a powerful calculus of logic, in the form of a Boolean ring (binary or
modulo-2 arithmetic), offering that language the means of deduction over the
truth values of its propositions. Third, he would have secured an ontology for
logic, given by the structure of classes and their relations of intersection, union
and complementarity (∪, ∩, ′), as a model of Boolean algebra, assuring the

8Which borrows the form from tables such as (1), as we can infer from the first column of
the first of the three tables in the manuscript.
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semantics of its language (i.e. what that language talks about).9 Thus, Boole
would have proposed, for the first time in history, a formal language, a deductive
calculus and an objective semantics as internal aspects of a unified system, whose
solidity is guaranteed by the isomorphic relations between Boolean algebras,
Boolean rings and their respective models. Thus understood, later logicians
only had to amend and refine such a system, following the perspectives initially
opened by Boole. In particular, truth tables would progressively affirm their
place in that configuration as a formal device assuring the correct articulation
between the different components of the system, and especially between the
formal language and the deductive calculus.

This general picture is however challenged by the known fact that Boole’s
own formulations differ in many respects from the system of Boolean logic as
we know it today. Indeed, if attention is paid to Boole’s original texts, it im-
mediately appears that his own system of expressions does not correspond to a
Boolean algebra, his calculus does not follow the rules of a Boolean ring, and
the models of his system are far from being standard. This divergence is nor-
mally explained as the effect of the understandable hesitations and mistakes
of every pioneering endeavor, with natural development by faithful followers
progressively eradicating such flaws. The history of that evolution is usually
indistinguishable from the history of Boolean logic itself, starting with Jevons’s
critiques of Boole’s system in Jevons (1890), and continuing through its differ-
ent rearrangements in the works of authors such as Schröder, Peirce and Peano,
until Russell’s full reassessment of symbolic logic in his Principia. This teleo-
logical perspective, whose most precise expression concerning Boole’s work can
be recognized in Corcoran and Wood (1980); Corcoran (2003)10, is not com-
pletely absent in the existing literature on the history of truth tables mentioned
in the previous section. This presentist use of history in logic unquestionably
contributes to shedding light on the analytical properties of our existing log-
ical systems. However, not only might it prevent the faithful reconstruction
of Boole’s original thought, but it may also inhibit the capacity of history to
suggest courses of development alternative to the ones we know.

Among the efforts to reconstruct the coherence of Boole’s original formula-
tions, the work of Hailperin Hailperin (1981, 1986) stands out both for its preci-
sion and exhaustiveness.11 His formalization of Boole’s formulations shows that
the latter’s system neither corresponds to a Boolean algebra (where 1 + 1 = 1),
nor to a Boolean ring (where 1 + 1 = 0), but to a commutative ring with unit
having no additive or multiplicative non-zero nilpotents, as a consequence of
Boole’s singular additive law, where 1 + 1 = 2, and more generally, x + x = 2x.
Moreover, Hailperin identifies the structure of signed multisets (i.e. sets capable
of having multiple and even negative occurrences of their elements) as a priv-
ileged model for that formal system. Significantly, unlike propositional logic
informed by Boolean algebras, Boole’s system is thus proved to be undecidable,
since the formal system in question contains the same symbols as the theory of
integers (Hailperin, 1986, p. 140-141).

Hailperin’s work provides invaluable tools for positively assessing the diver-

9For a standard presentation of Boolean algebras and rings, see, for example, Givant and
Halmos (2009).

10Reference to a larger number of works following this approach can be found in Brown
(2009).

11Other works with the same direction include Brown (2009); Burris (2014).
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gences between Boole’s own system and Boolean logic, especially regarding the
relation between the aforementioned computational and the semantic aspects.
However, if one compares Hailperin’s formal reconstruction to the canonical
forms of Boolean logic, it must be admitted that the relevance of Boole’s orig-
inal system is rather limited. Indeed, Hailperin is forced to acknowledge that
Boole never made use of the possibilities of his richer formal structure, men-
tioning only minor results that the latter could have guaranteed.12 This is why
the presence of what retrospectively appear as embryonic truth-table devices in
Boole’s manuscripts offers an opportunity to assess the singularity of Boole’s
system anew, since the divergences they manifest with our current understand-
ing of truth tables direct the attention to the linguistic component of Boole’s
system, relatively understudied from this original viewpoint.

To this end, we need to address those divergences less as a barrier to over-
come and more as a positive difference to understand. Now, if Boole’s tables
appear to us as embryonic—that is, unborn and perfectible—truth-table de-
vices, it is because we presuppose that Boole’s logic is essentially conversant
with propositional logic, in which the composition of propositions is determined
by the use of connectives, which are in turn governed by truth-functional prin-
ciples. From this point of view, Boole’s tables cannot but show a triple lack
of systematicity: in the choice of the propositions whose table is given, in the
principles of composition of such propositions which those tables do not capture,
and in the relation between the arguments and values of the functions computed
by the tables which they somewhat fail to present. In the next three sections,
I will address those issues as a way of revealing an alternative systematicity in
Boole’s system.

2.1 Boole’s logic of propositions is not propositional
logic: the logical meaning of expressions

The systematic character of modern truth tables is attached to two main dif-
ferent principles of exhaustiveness. On the one hand, truth tables provide a
decision procedure to determine the truth or falsity of any proposition, given
the truth value of its elementary components, following the hierarchical order of
their exhaustive decomposition. For instance, the truth value of the proposition
p ∧ (p → q) → q, given that p is true and q false, can be determined by com-
puting first the truth value of p → q, then that of p ∧ (p → q), and finally that
of the entire proposition, which in this case will turn out to be true.13 On the
other hand, given all the possible truth-value attributions for a given number of
different elementary propositions, the exhaustive consideration of the possible
different truth tables for the composition or combination of those propositions
provides a closed list of all the possible definable connectives (22

2

= 16 possi-
bilities for two-valued binary connectives).14 Both principles of exhaustiveness
guaranteed by truth tables contribute in a decisive way to establishing the fun-
damental properties of the entire system of propositional logic as such. Indeed,
if in the first case, one considers all the possible attributions of truth values for
the elementary components, truth tables can provide, in addition, a decision
procedure determining whether any given proposition is logically true (i.e. true

12See, for instance, (Hailperin, 1981, p. 178) and (Hailperin, 1986, p. 147).
13See, for instance, (Post, 1921, p. 167).
14See, for instance, (Wittgenstein, 2001, § 5.101).
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irrespective of the truth of its elementary components, as is the case in the given
example).15 In the second, considering all definable truth tables can, in turn,
provide the means to determine the functional completeness of different choices
of the respective connectives as primitive terms.16 Both systematic principles
associated with truth tables help to back up the idea that logic can and must
be conceived as primarily concerned with the truth conditions of propositions,
regarding which truth tables can give the best possible formal definition. Both
truth tables and propositional calculus appear then as inseparable from those
principles.

Interestingly, none of those principles is, strictly speaking, present in Boole’s
system, either in his novel use of tables or in his system as a whole. If we want
to understand the original meaning of Boole’s tables, it is then necessary to call
attention to a surprisingly neglected circumstance, namely that Boole’s own
system is not primarily concerned with propositions as such, but rather with
expressions. More precisely, Boole’s “Calculus of Logic” is above all conceived
as a system of symbolic expressions through which logical propositions accept
a mathematical treatment. Despite Boole’s original perspectives, later devel-
opments of his logic would tend to erase the difference between the notions of
proposition and expression by reducing the latter to the former in such a way
that the notion of expression appears to us as a regular word used to speak about
propositions. However, regarded exclusively in terms of the latter, Boole’s sys-
tems appears cumbrous, clumsy and unnecessarily sophisticated. As a matter of
fact, very little of Boole’s own system is comprehensible without attributing to
the notion of expression a different—yet no less technical—meaning than that
of proposition. Not only does Boole never mistake one for the other, but, as we
will see, his very conception of logic is consciously built around the problematic
connection between them.

In the most general terms, expressions appear as the elements of a pure
symbolical dimension in which different domains of objects can be alternately
represented. The origin of this notion, as far as Boole’s usage is concerned,
is mathematical. In effect, the notion of expression inherited by Boole can be
traced back to 18th century Continental analysis, marked by the efforts of Euler
and Lagrange to define analytical functions as “expressions of calculation”.17 At
the turn of the 19th century, the English algebraists, starting with Woodhouse,
followed by mathematicians such as Babbage, Peacock and Gregory, were to
take up this notion and develop it in the original direction of a purely symbolical
approach, that is, of a reduction of the meaning of expressions to the properties
resulting from the laws of combination to which those expressions are subject
(the notion of expression being thus specified as a combination of individual
symbols). As a consequence, symbolical or abstract algebra was established as
an independent field of mathematics, based on algebraic operations conceived
as pure symbolical manipulations of expressions, regardless of their (numerical
or quantitative) content. Within this framework, abstract algebraic laws were
considered as admitting as many applications as domains of objects accepting
representation by its symbolic expressions, without being burdened with the

15For Gödel’s use of truth tables for the decidability of propositional calculus, see (Adzic
and Dosen, 2017, p. 23).

16See (Adzic and Dosen, 2017, § 1.1.8).
17For an interesting study putting forward the notion of expression in Lagrange, see Ferraro

and Panza (2012).
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quantitative import traditionally associated with them.
Among the English algebraists, the originality of Boole was then to realize

that those purely abstract manipulations of expressions could also be capable of
accounting for the fundamental properties of logical thought. Thus, when simple
expressions or symbols (like x or y) accept combination following specific laws
(Boole’s famous “laws of thought”, such as x(u + v) = xu + xv, xy = yx or
x = x2), such symbols can express the properties of logical concepts. Logical
propositions can then be expressed as equations between those symbols, such as
wy = x−y, symbolically expressing the conditions stated by those propositions.

By means of this novel interpretation, the algebraic calculus becomes an al-
gebra or calculus of logic, and more significantly, logical thought gains access
to an entirely new formal dimension.18 However, expressions and propositions
do not become identical for that reason, and the universe of symbolic expres-
sions, with which Boole’s calculus of logic is principally concerned19, remains
essentially larger than that of propositions.

The relevance to our investigation of the distinction between expressions
and propositions lies in that only the latter are essentially related to truth and
falsehood. On the contrary, the symbolic expressions of Boole’s calculus are, as
such, indifferent to truth. Certainly, such expressions can happen to be directly
or indirectly concerned with the problem of truth, namely when they represent
(i.e. accept being interpreted as) propositions. This can take place in two
different ways. We have already mentioned the first, when expressions are put
in equational form. In this case, their relation to truth is indirect, since symbolic
expressions only express the class content of the propositions they represent, and
the truth or falsity of the latter does not find a way of being explicitly expressed
in the symbols (e.g. the truth value of the proposition “All Xs are Ys” is not
actually itself expressed by the equation xy = x that represents it, but only its
class content).

The second case occurs when the proposition represented by an equation is
hypothetical (or “secondary”, as Boole calls it, in contrast with “primary” or
categorical), since in this case the symbolic terms that compose the equational
expression represent propositions themselves, as in the schema in (1). Under
this secondary interpretation, symbolic expressions are more directly concerned
with the truth and falsity of the propositions they now somewhat express. As
Boole puts it, “Secondary Propositions are those which concern or relate to
Propositions considered as true or false” (Boole, 1854, p. 160). It is then this
particular interpretation that has motivated the invariable understanding of
Boole’s entire system in terms of propositional logic. However, some remarks
about the limits of that understanding are in order, starting with Boole’s afore-
mentioned hesitations regarding the proper way to conceive of this secondary
interpretation of expressions involving, among others, the notion of time, and
associated with his constant need to attach interpretations to class contents.20

18This new formal character is here given by the mathematical notion of analytical form,
related to the formal use of series expansions, rather than by the traditional “argumenta
in forma” of classical logic. For the formal use of series in 18th and early 19th-century
mathematics, see Ferraro (2007, 2008).

19Boole is constantly clear about this: “We might justly assign it as the definitive character
of a true Calculus, that it is a method resting upon the employment of Symbols, whose laws of
combination are known and general, and whose results admit of a consistent interpretation.”
(Boole, 2009, p. 4).

20See (Boole, 1854, XI, § 5).
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Furthermore, Boole’s secondary interpretation of his symbols is precisely that:
secondary. In other words, the entire system is developed (be it in MAL, in LT
or in the manuscripts) first and foremost under the categorical interpretation,
and the hypothetical interpretation is only introduced once all the features of
the calculus have already been laid out.21 Boole never stopped insisting on
the subordinate place occupied by secondary propositions in his system, leav-
ing the fragment of it directly concerned with truth and falsehood precisely
circumscribed.22

Yet there is a deeper reason preventing the projection of propositional logic
onto Boole’s logic of propositions. If one takes a closer look at Boole’s for-
mulations, it appears that even under a secondary interpretation, symbolic ex-
pressions fail to properly express propositional truth and falsehood as directly
attached to logical connectives. Let us refer, for instance, to the treatment of
secondary propositions in MAL, where Boole formulations are as close as they
can get to modern propositional calculus. In those pages, Boole proposes ex-
pressing compound propositions like “X and Y are simultaneously true”, “either
the Proposition X is true, or the Proposition Y is true”, etc., based on a sec-
ondary interpretation of x = 1 and x = 0 respectively as “Proposition X is true”
or “Proposition X is false” (Boole, 2009, p. 51). The proposition “X and Y are
simultaneously true” will then turn out to be represented by xy = 1, as one
would expect from a contemporary perspective. However, Boole represents the
proposition “X and Y are simultaneously false” either as (1 − x)(1 − y) = 1 or
as x + y − xy = 0. It already appears that from the viewpoint of expressions,
both propositions appear essentially different. Certainly, the literal symbols x
and y permit one to identify that both are composed of the same elementary
propositions, X and Y. However, that is pretty much all that the propositions
are shown to have in common.

It follows that no direct correspondence between the form of the expressions
and that of propositions necessitates or encourages the analysis of the latter
in terms of truth values (true and false) and logical connectives (like “and”
or “either . . . or”, etc.), since no autonomous, identifiable symbolical principle
can be found for them at the level of expressions.23 In particular, 1 and 0 do
not directly represent truth and falsehood, as much as algebraic operations do
not directly represent logical connectives. Indeed, in Boole’s calculus, the same
true compound proposition can be represented by expressions equated either
to 1 or to 0, as much as conjunctive propositions can be represented as the
multiplication or addition of terms or conjunctive and disjunctive propositions
can be represented by the same algebraic operation. In this setting, truth values
and logical connectives are distributed, as it were, through the entire form of the
expression, following a structure radically foreign to that of logical propositions,
which Boole never intended to modify.

Accordingly, without autonomous truth values and detachable connectives,
a truth functional approach to logical propositions has virtually no role to play

21For the reduction of hypotheticals to categoricals, see Nambiar (2000).
22As in this passage, in which truth and falsehood are said to concern only “a branch” of

logic: “A denial must be a denial of the truth of a proposition and there is a branch of Logic
[...] which relates to propositions in their special attributes of truth and falsehood and in the
relations flowing from those attributes” (Grattan-Guiness and Bornet, 1997, p. 59).

23Boole’s modifications in the treatment of secondary propositions in LT do not significantly
change this decisive feature of his approach. See (Boole, 1854, p. 169 sqq.).
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in his system. The expressions through which Boole’s system represents “X and
Y are simultaneously true” and “X and Y are simultaneously false” can (and
will) accept a functional expression, such as f(xy). However, this functionality
is neither a truth-functionality (i.e. f(xy) = 1 and f(xy) = 0 do not necessarily
and unequivocally represent that f(xy) is respectively true and false), nor does
it permit defining propositional compositionality in terms of logical connectives
(i.e. f(xy) and g(xy) are not intended to ultimately represent different logical
connectives by which x and y can compose a new proposition).

At the source of this (to our modern eyes uncanny and flawed) way of dealing
with logical propositions is the pervading disparity between expressions and
propositions upon which Boole’s system is built. Such a disparity is incompatible
with a conception of logic based upon the truth conditions of propositions.
Indeed, Boole’s calculus of logic is neither definable nor comprehensible in those
terms. As in the case of functionality, it follows that if Boole arrays are indeed
table devices, they cannot primarily be truth-table devices. Accordingly, the
systematicity of the former cannot be measured against that of the latter. If
Boole’s tables are systematic, their systematicity should be sought elsewhere.

2.2 The method of development and the compositional
form of expressions

If we free logical expressions from their traditional relation to truth, and focus
again on the elementary expressions upon which Boole’s system is based, such
as xy, x + y or x − y, it will appear that, indifferent to truth and falsehood,
expressions are only governed by abstract laws. As such, the main danger they
face is not of being false, but of being meaningless. In other words, the major
problem for a system of symbolic expressions is that they reveal themselves in-
capable of admitting an interpretation. Here again, Boole inherits this concern
not from logic but from the mathematics of his epoch.24 By preserving the
central disparity between symbolic expressions and their propositional interpre-
tation within his system of logic, the English logician forces logical thought to
assume the problem of meaning or interpretation as a chief concern. Indeed, un-
like the circumscribed character of the problem of truth in his system, Boole’s
entire logical production clearly shows that his most important philosophical
and technical efforts have been directed at the problem of the interpretation of
its expressions.

Although the philosophical grounds of his answer to the question of interpre-
tation evolved throughout his work, Boole never abandoned the general idea that
the logical interpretation of expressions relies on the capacity of expressions to
capture the class content that organizes the logical properties of propositions.25

However, Boole never actually developed a rigorous theory of classes that could
externally control the semantics of his system. Instead, building upon an origi-
nal and powerful philosophy of signs whose importance can be seen to increase
from MAL to the manuscripts after LT, he constantly addressed the problem

24Indeed, the meaning of uninterpretable algebraic expressions, such as
√
−1 or non-

convergent series expansions, was a common concern for the English algebraists, and oc-
casioned the originality of their approach. For an extensive treatment of this problem in the
most general terms, see Babbage’s Babbage (1826).

25See, for instance, (Boole, 2009, p. 4-5), (Boole, 1854, p. 28, 47), (Grattan-Guiness and
Bornet, 1997, p. 67 sqq.).
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of interpretation through the formal properties of the expressions themselves.26

The evolution of this question in his work shows an effort to simplify and unify
the principles underlying the interpretability conditions of the system of logical
expressions. As we will see, Boole’s table devices are the most developed result
of that attempt.

From the point of view of a formal system, the problem of meaning or inter-
pretation does not touch the isolated symbols (like x or y) but their combinations
into compound expressions, since the formal laws by which that combination is
effected is by definition foreign to the meaning of the symbols, and hence likely to
introduce meaningless expressive features. If truth tables occupy such a central
role in propositional calculus, it is because in them expressions are restricted to
propositions, and their relevant logical meaning is reduced to their truth value,
in such a way that the problem of their interpretation can be solved by uniquely
determining the compositional principle of propositional expressions in terms of
truth functions. The combinatorial properties of truth-table devices handle, in
turn, those truth functions in an elegant manner. We have already seen how this
truth-conditional approach, which truth tables implement, provided a general
deterministic procedure to analyze any proposition into its hierarchical com-
ponents and compute its truth value following the structure of that hierarchy
(p. 9).

Indifferent to both propositional forms and truth-conditionality, the expres-
sions of Boole’s system cannot afford such a simple solution. Therefore, to find
an equivalent device in Boole’s logic we should focus less upon their superfi-
cial tabular aspect than the central role they play in the articulation between
the syntactic structure of propositional expressions and their logical meaning or
content.

From this perspective, the key to Boole’s system lies not in his table devices
but in his method of development of logical functions. This method, which
Boole considers the process whereby “the analytical element of reasoning finds
expression” (Grattan-Guiness and Bornet, 1997, p. 97), contains the essence of
Boole’s solution to the problem of interpretability. Considered as one of the most
obscure components of Boole’s logic, the details of and reasons for this procedure
are rarely assessed in the literature. This is hardly surprising since it bears
no immediate connection to the traditional principles of modern propositional
logic; and yet, as aberrant as it may seem, the method of development was one
of the most fertile devices in Boole’s work. Indeed, Boolean table techniques
and devices, as well as Boolean dual uses of 1 and 0, can be archaeologically
traced back to this procedure. It is thus worth expounding upon it.

Boole introduced his method of development of logical functions in MAL,
under the title “Properties of Elective Functions”, (Boole, 2009, p. 60 sqq.) after
having presented all the principles of expression (of categoricals, syllogisms and
hypotheticals). The aim was to introduce the method by which his system
was capable of attaining the generality announced from the very first pages of
his treatise. The starting point is, therefore, a functional approach to logical
expressions: the logical or “elective” functions ϕ(x) and ϕ(xy) thus represent
any expression involving respectively the elective symbols x or x and y. If

26This reliance on signs is what justifies Boole’s late definition of logic as “noetic” instead of
“ostensive” (Grattan-Guiness and Bornet, 1997, p. 72). For a condensed overview of Boole’s
late articulation of the problems of interpretability and signs, see Rhees’s introduction to
Rhees (1952), especially p. 17 sqq.
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a functional approach to logic exists in Boole’s work, it is here, and not at
the level of truth conditions, that it can be found. However, the recourse to
functionality is not limited to a notational shorthand. For, surprisingly, Boole
then proposes expanding or developing those functions following McLaurin’s
theorem, in ascending powers of x, based on the fact that elective symbols
“combine according to the laws of quantity” (Boole, 2009, p. 60). The resulting
development for ϕ(x) is:

ϕ (x) = ϕ (0) + ϕ′ (0)x +
ϕ′′ (0)

1 · 2
x2 + &c. (2)

Since the developed expression is considered to be symbolically equivalent to
what we may term the “enveloped” one ϕ (x), it must also be subject to the
laws of his system, and in particular, to x2 = x. All the ascending powers of x
in (2) can then be substituted by x and then factored out to obtain:

ϕ (x) = ϕ (0) + x{ϕ′ (0) +
ϕ′′ (0)

1 · 2
+ &c.} (3)

Next, the coefficient of x in (3) can be substituted by ϕ(1)−ϕ (0), since, making
x = 1 in (3), we obtain

ϕ(1) = ϕ (0) + {ϕ′ (0) +
ϕ′′ (0)

1 · 2
+ &c.} (4)

and subtracting ϕ (0) from both sides of (4):

ϕ(1) − ϕ (0) = ϕ′ (0) +
ϕ′′ (0)

1 · 2
+ &c. (5)

Finally, the aforementioned substitution of (5) in (3) results in

ϕ (x) = ϕ (0) + x{ϕ (1) − ϕ (0)} (6)

which Boole rearranges by distributing x and factoring out ϕ (0) to obtain

ϕ (x) = ϕ (1)x + ϕ (0) (1 − x) (7)

thus getting a recognizable expression of his system. Boole immediately gen-
eralizes this result to functions of multiple variables, by developing them with
respect to each one of them successively. Thus, for a function ϕ (xy) of x and y
(such as xy or x + y), he obtains:

ϕ (xy) = ϕ (11)xy +ϕ (10)x(1− y) +ϕ (01) (1− x)y +ϕ (00) (1− x)(1− y) (8)

where ϕ (11) means that in ϕ(xy) both x and y are to be replaced by 1.
Considered from the perspective of propositional calculus, the eccentricity of

Boole’s approach cannot be explained away. However, if we bear in mind that
the main units of Boole’s system are not logical propositions but expressions,
Boole’s procedure becomes perfectly intelligible. In effect, series expansions (or
“developments”) were established by the English algebraists as the privileged
formal principle for analyzing any symbolic expression into its elementary con-
stituents. Through series expansions, expressions such as 1

1−x or ex could be
seen as “composed of”, as it were, (an infinite number of) elementary terms of
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the form aix
i (xn in the first case, xn

n! in the second), the particular form of
which (i.e. the particular coefficients of the different powers of x) is determined
as a function of the initial expression. In this way, all the possible symbolical
relations between the terms falling under the initial expression can be captured
and analyzed as relations between the terms of its expansion.27 Detached from
their numerical conditions, the development of pure symbolic expressions was
thus proposed and used by the English algebraists as a fine tool of symboli-
cal manipulation and analysis. In particular, developments provide a common
symbolic structure where the multiplicity of symbolic expressions could be pro-
jected and measured (e.g. the differences and similarities between 1

1−x or ex

can be reduced to those of xn and xn

n! , which share the same underlying form).
In the end, by projecting every symbolic expression onto this elementary shared
structure, the general method of development furnishes a powerful instrument
of symbolical reduction to normal form.

It is then perfectly understandable if, confronted with the problem of the
internal compositional form of logical expressions, Boole appeals to the best
instrument of symbolical analysis at hand, given by the formal development of
functions. Viewed retrospectively, we can think that the insights stemming from
the resultant analysis of logical expressions might offset the lack of foundational
rigor.

Two major ideas deserve to be mentioned in this sense. The first one is
that, by means of this symbolical analysis, any expression subject to the law
x2 = x (i.e. any logical expression) appears to be “composed of” a particular
configuration of all the possible combinations of its elementary symbols and their
negations. For instance, any expression involving the logical symbols x and y
will be analyzable in terms of xy, x(1−y), (1−x)y and (1−x)(1−y) (where 1−x
can be interpreted as the complementary of x). This is to say that the method
of development provides Boole with a table technique, in the sense proposed
by Shosky. However, it is not a truth-table technique, not only because, as we
have seen, symbolic expressions are primarily indifferent to truth and falsehood,
but also because Boole’s table technique, unlike truth-table techniques in the
history of logic, is not based on logical grounds (such as the principle of excluded
middle), but on the purely formal properties of the symbols subject to the law
x2 = x.

From the point of view of the symbolic form of logical expressions, Boole’s
techniques differ radically from the truth-conditional analysis of propositions.
Indeed, a logical expression such as x + y will not be in this case analyzed
as composed of x and y, combined through the truth-functional connective +,
but composed by a certain configuration of the elementary constituents xy,
x(1 − y), (1 − x)y and (1 − x)(1 − y), as any other expression involving x
and y. Interestingly, from this perspective, simple expressions such as x are
not necessarily elementary, since they can also be shown to be composed of a
certain combination of x and 1−x (namely, that combination in which the latter
constituent is absent).

Boole’s development of logical functions is therefore closer to modern dis-
junctive normal forms than to truth-table techniques. Yet strictly speaking, the
constituents give only the general schema of the normal form. Specific functions
are, however, reduced (i.e. developed) to particular cases of that schema. For

27For all this, see, for example, Ferraro (2007, 2008).
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instance, x + y is developed into x(1 − y) + (1 − x)y and xy simply into xy.
This is where lies the second major logical idea that Boole derives from the
symbolical analysis effected by formal series expansions. As a consequence of
the operations underlying the method of development, that specific configura-
tion is shown to be the result of alternately attributing the values 1 and 0 to
the elementary symbols in the expression in question. The different possible
attributions of the values 0 and 1 in the enveloped expression provide then the
different coefficients (or “moduli”) that determine the particular configuration
of the constituents that characterize symbolic expressions. Boole summarizes
the whole procedure in the following terms:

It is evident that if the number of elective symbols is m, the number
of the moduli will be 2m, and that their separate values will be
obtained by interchanging in every possible way the values 1 and 0 in
the places of the elective symbols of the given function. The several
terms of the expansion of which the moduli serve as coefficients, will
then be formed by writing for each 1 that recurs under the functional
sign, the elective symbol x, &c, which it represents, and for each 0
the corresponding (1 − x), &c, and regarding these as factors, the
product of which, multiplied by the modulus from which they are
obtained, constitutes a term of the expansion. (Boole, 2009, p. 63)

If we take, for instance, ϕ(xy) = xy, we have that the different possible
attributions of the values 1 and 0 to x and y give 1 for x = y = 1 and 0 for the
others. Taking the values 1, 0, 0 and 0 as the coefficients of the constituents of
the development of ϕ(xy), it appears that only the first of them is to be kept,
namely xy. Employing the contemporary language of normal forms, we can say
that in this system the expression xy “reduces” to itself.

A slightly more complex example will help us grasp Boole’s method in a
more general way. Let ϕ (xy) = x (1 − yx). We then have that:

ϕ (11) = 1 (1 − 1 · 1) = 0

ϕ (10) = 1 (1 − 0 · 1) = 1

ϕ (01) = 0 (1 − 1 · 0) = 0

ϕ (00) = 0 (1 − 0 · 0) = 0

(9)

Hence, substituting the values of (9) in (8), we have:

x (1 − yx) = 0xy + 1x(1 − y) + 0(1 − x)y + 0(1 − x)(1 − y)

= x(1 − y)
(10)

If we consider how these two major ideas are intrinsically connected by the
formal use of series expansions, we can understand then that Boole’s theory of
developments is the very place where the two dimensions of truth tables that
were hitherto thought to remain separate actually articulate, namely a table
technique and the computation of the content of compound expressions out
of all the possible combinations of 1 and 0. The reason why none of these
relates directly to truth conditions should be clear by now but their intimate
articulation is no less the occasion for the emergence of a table device. Indeed, it
is almost explicit in the equations we have laid down in (9); and if in MAL Boole
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gives these results in a line28, in LT the spatialization of the technique overrides
the economy of space, and Boole writes, for the function 1 − x expressed as a
function of x and y (Boole, 2009, p. 76):

When x = 1 and y = 1 the given function = 0.
x = 1 ,, y = 0 ,, ,, = 0.
x = 0 ,, y = 1 ,, ,, = 1.
x = 0 ,, y = 0 ,, ,, = 1.

which already shows the fundamental properties of a table device.
Nonetheless, that table is incomplete under the standards of the method of

development, since it does not present the constituents, which Boole invariable
expresses in equational form, as in (10). We could try to fill this last gap by
showing that Boole’s method of development contains all the necessary elements
of later table devices by projecting them into the embryonic truth-table devices
of Russell and Wittgenstein Shosky (1997) or Peirce Anellis (2012). The general
schema given by (8) would then be:

ϕ (xy) y (1 − y)
x ϕ(11) ϕ(10)

(1 − x) ϕ(01) ϕ(00)

and the tables corresponding to the two examples ϕ (xy) = xy and ϕ (xy) =
x (1 − yx) are as follows:

xy y (1 − y)
x 1 0

(1 − x) 0 0

x (1 − yx) y (1 − y)
x 0 1

(1 − x) 0 0

Yet as a matter of fact there is no need to appeal to such later table devices,
since table devices naturally emerge from ordinary algebraic practice if we only
stack several developments, such as those in the given examples, in the following
way:

xy = 1xy + 0x(1 − y) + 0(1 − x)y + 0(1 − x)(1 − y)

x (1 − yx) = 0xy + 1x(1 − y) + 0(1 − x)y + 0(1 − x)(1 − y)
(11)

If we now remove the superfluous constituents, as is standard in algebra, and
place them as headers of the resulting array, we can easily see the table device
implied in the underlying algebraic practice of Boole’s development:

xy x(1 − y) (1−x)y (1 − x)(1 − y)

xy 1 0 0 0

x(1 − yx) 0 1 0 0

(12)

From here, we only have to transpose the resulting table to arrive at a
modern (truth) table:

xy x (1 − yx)
xy 1 0

x(1 − y) 0 1
(1 − x)y 0 0

(1 − x)(1 − y) 0 0
28For example: “Let ϕ(xy) = x(1 − y), then ϕ(10) = 1, ϕ(11) = 0, ϕ(01) = 0, ϕ(00) = 0”

(Boole, 2009, p. 74).
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2.3 Brief archaeology of 1 and 0. Dual algebra as
foundations of the expressive system

Along with an original analysis of logical expressions into normal form, Boole’s
method of development brought forward the relevance of the joint functioning
of 1 and 0 in his system. Considering the principles of expression set out in
MAL, that feature is rather unexpected and Boole must have become aware
of its importance retrospectively, since only in the postscript to MAL (written
while the work was already in print) does he acknowledge that 0 and 1 are
the “points” in which “[t]he two systems of elective symbols and of quantity
osculate, if I may use the expression”. He improvises here an explanation in
terms of the principle, which he will not later reproduce, that “a Proposition is
either true or false” (Boole, 2009, p. 82). Notwithstanding this fairly marginal
justification a posteriori, the meaning of 0 and 1 as dual terms in Boole’s system
resists any substantial association with truth and falsehood, and remains deeply
rooted in the most delicate symbolical mechanisms of the mathematics of his
time.

To corroborate this point, we have only to consider the development of ex-
pressions such as x + y or x−y

y , and stack them together with our previous

examples in (12). We obtain then:

xy x(1 − y) (1−x)y (1 − x)(1 − y)

xy 1 0 0 0

x(1 − yx) 0 1 0 0

x + y 2 1 1 0

x− y

y
0

1

0
−1

0

0

(13)

The new expressions are perfectly legitimate within Boole’s system, and by
no means artificial; yet they bring an unexpected behavior into Boole’s table
devices, and into his system as a whole, since they cause the introduction of
numerical terms (and in some cases, such as 1

0 and 0
0 , not even clearly numerical)

other than 0 and 1. As trivial as these examples may be, they make apparent
what we already knew: that Boole’s table techniques and devices are not truth-
table techniques and devices, and that Boole’s functional approach to logic
cannot be a truth-functional approach. For what could 2, −1, and even 1

0 and
0
0 , mean as legitimate values in a truth table? And which truth value could we
attach to them as values of truth functions? Boole’s logical functions might very
well range over a domain consisting only of 0 and 1, their codomain remains
open to the self-governed realm of symbolic expressions, and the problem of
attaching to them a reassuring logical interpretation remains an open issue.

Yet what then could be the logical significance of 0 and 1 as dual terms?
Notwithstanding the received wisdom, there is no unified concept subsuming
the varied uses Boole makes of 0 and 1 throughout his work. What we find
instead is a multiplicity of locally more-or-less effective interpretations which
the logician tries, with much effort, to progressively unify, without necessarily
succeeding. In more than one sense, it could be claimed that if the problem of
the general interpretability of the expressions of his system animated Boole’s
entire logical enterprise, the elaboration of a sound and unified theory of 0 and
1 relentlessly oriented his search for a solution.
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Previous to its dual use in the method of development in MAL, the symbol 1
had been introduced independently from the very first lines of the work, to rep-
resent “the Universe”, as comprising “every conceivable class of objects whether
actually existing or not. . . ” (Boole, 2009, p. 15).29 The most immediate logical
use that Boole makes of it as an elective symbol is in combination with the op-
eration of subtraction to express negation: as already suggested, 1−x expresses
the class of elements that are not x. Significantly, in MAL, 0 is not equally
introduced as an elective symbol. In fact, 0 is not introduced at all in his early
logical work. It appears for the first time when expressing logical propositions,
such as “no Xs are Ys” in the form xy = 0 (Boole, 2009, p. 21). At this early
stage of Boole’s formulations, 0 belongs to the system only as the result of the
admitted properties of algebraic operations over symbolic expressions. Under
this particular use, 0 is not, like 1, a standalone symbol. Its meaning, if any,
results from its inscription in the context of an equational expression, in which
case Boole interprets it roughly as non-existence (i.e. there exist no individuals
of the class X that are at the same time individuals of the class Y). Note that
none of these primitive uses of 1 and 0 is immediately or fundamentally related
to the notion of truth. Furthermore, under such asymmetric interpretations, 1
and 0 do not even function as an identifiable pair. Truth and falsehood, in the
context of secondary propositions, will provide the first occasion upon which
they are conceived as constituting an alternative, following the equational use
previously attached to 0. We have nevertheless already shown the limits of such
an interpretation for a standalone conception of 0 and 1.

It follows that the first neat dual use of 0 and 1 in Boole’s work is effected
by the method of development in MAL. Resulting from the algebraic properties
of expressions, Boole shows no intention of assigning any logical meaning to
them in that work, other than the hasty remark in the postscript. However, the
relevance of this novel association between both terms will gain a central role
in the reconfiguration of the system operated in LT.

Boole’s 1854 work manifests an evolution in the philosophical grounds of his
logical calculus, from operations over classes to linguistic categories supposed
to express them (nouns, adjectives, verbs...). In this new context, 0 and 1 have
no immediate place among the symbols of the system (in particular, 1 cannot
be introduced as a primitive symbol representing “the Universe”). Boole will
then introduce them, together this time, in a surprising way: 0 and 1 are the
only “symbols of Number” subject to the fundamental law of logic x2 = x
(Boole, 1854, p. 32). In other words, considered as regular algebraic expressions,
x2 = x accepts only two roots or solutions, which are precisely 0 and 1.30

Boole concludes that logical symbols can therefore be compared to quantitative

29This definition is, as we now know, full of subtlety and danger. However, Boole adroitly
avoids defining 1 as the class of all classes, and prevents the confusion between both by
attributing to them different semiological status: in Boole’s own terms, while 1 is a “symbol”
(as much as x or y), classes are referred to by “letters” such as X or Y. See (Boole, 2009, p.
15).

30Boole will further associate the fact that the fundamental law of logic is of second degree
to the dual nature of logical symbols (since from x2 = x we can have x(1− x) = 0, which he
can interpret as the law of contradiction). Incidentally, this offers him occasion to consider
the possibility of the fundamental law being of higher degree, thus explicitly envisaging the
existence of logics whose terms would accept more than two possibilities (Boole, 1854, p. 49-
50). However, Boole never explicitly relates the degree and factorization of that fundamental
equation to the duality of 0 and 1, which could have been made through their status as roots
of that equation.
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symbols admitting only the values 0 and 1, and considers the existence of a
specific algebraic domain to that effect:

Let us conceive, then, of an Algebra in which the symbols x, y, z,
&c. admit indifferently of the values 0 and 1, and of these values
alone. The laws, the axioms, and the processes, of such an Algebra
will be identical in their whole extent with the laws, the axioms, and
the processes of an Algebra of Logic. Difference of interpretation will
alone divide them. (Boole, 1854, p. 37)

It is then clear that under that primitive understanding as dual terms, 0 and
1 are first and foremost numbers, without any logical meaning. As such, they
do not actually belong to the calculus of logic, but constitute a parallel system
to which the algebra of logic can be compared, as a sort of “model” by reference
to which analogies can become correspondences. Only after having introduced
them as non-logical symbols will Boole try to determine their “logical value and
significance” as symbols of his system. It should come as no surprise that the
logical value Boole attributes to them is not truth value, but the meanings of
“Nothing” for 0 and “Universe” for 1, based on what is possibly one of the
earliest purely algebraic definitions of 0 and 1, respectively as absorbing and
neutral multiplicative elements (Boole, 1854, pp. 47-48).

The introduction of 0 and 1 as the fundamental terms of a new algebra, which
Boole will later call “dual Algebra” or “arithmetic of 0 and 1” (Grattan-Guiness
and Bornet, 1997, pp. 91, 113), provides a much more harmonious and unified
presentation of his system. In particular, the duality of both terms having been
introduced independently, the presentation of the method of development is
hugely simplified. Indeed, by considering symbolic functions f(x) as ranging
over the domain of dual algebra (i.e. admitting only the values 1 and 0), Boole
introduces its development directly by assuming its “reduction” to the form
ax + b(1 − x). It then suffices to consider that f(1) = a and f(0) = b to
determine the coefficients and obtain the full development:

f(x) = f(1)x + f(0)(1 − x) (14)

A generalization to multiple variables is straightforward, as in MAL, and the
ancient derivation of (14) by Taylor series expansions is reproduced in a note as
being less general than the new one, which “strictly holds, in the logical system,
the place of the expansion of f(x) in ascending powers of x in the system of
ordinary algebra.” (Boole, 1854, p. 72 n.).

One could be tempted to think that with dual algebra, Boole is progressively
disposing of all the foreign mathematical background in favor of a purely for-
mal approach, and therefore coming closer to a modern conception of Boolean
algebra that will unavoidably orientate his logical system in the direction of
propositional logic. However, the truth is that dual algebra does not alter the
fundamental problem with which Boole’s logic is concerned. On the contrary, it
confirms it and clarifies it. It confirms it, because the same non-dual coefficients
(i.e. other than 0 and 1) continue to haunt the development of logical expres-
sions, reasserting that despite their derived logical meaning, 0 and 1 do not lose
their primitive numerical nature. This corroborates the idea that the principal
task of a calculus of logic is to deal with the boundary that distinguishes logical
expressions from all the other expressions that necessarily surround them.
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Yet dual algebra also provides novel means by which to clarify that problem,
as Boole’s tables reveal in his manuscripts, the complex sense of which we are
finally ready to understand.

3 Boole’s untruth tables. The formal
conditions of expressive meaning

During the entire previous section we saw that to Boole the general problem of
interpretability constitutes a key concern of formal logic. By defining the form
of its expressions in terms of the truth conditions of logical propositions and by
reducing the meaning of the latter to their truth values, propositional calculus
prevents this problem from appearing. However, Boole wants the form of the
symbolic expressions of his system to be independent from that of propositions,
and determined only by abstract laws. The analysis of their compositional form
is then not enough to trivially solve the problem of their logical meaning. As
we have seen, the method of development by which such an analysis takes place
constantly produces uninterpretable results. A general method of interpretation
complementing that of development is needed, so that every symbolic expres-
sion representing a logical proposition finds a proper interpretation. Referring
to the procedure by which he actually solves this major problem, Boole resumes
the situation in the following terms: “though functions do not necessarily be-
come interpretable upon development, yet equations are always reducible by
this process to interpretable forms.” (Boole, 1854, p. 78. Boole’s emphasis).

Boole’s solution thus aims to guarantee that any equational form is inter-
pretable. In MAL, Boole obtains this result by building on certain properties of
functions. Thus, in the “Properties of Elective Functions” chapter (Boole, 2009,
pp. 60-69) he shows in turn that functions differ only by the moduli of their de-
velopment (i.e. developments constitute a sound representation of functions);
that each of the constituents of the development satisfies the law x2 = x (i.e.
is interpretable in his system); that the product of any two of them is equal to
0 (i.e. they are pairwise mutually exclusive); and that their sum is equal to 1
(i.e. the decomposition partitions the universe). Based on those results, he then
proves that for any equation of the form V = 0 (V being an elective function)
the constituents of the development of V with non-zero coefficients should be
separately equated to 0 [p. 64-65], and more generally, that for any equation
w = V (w being an elective symbol not contained in V ), any constituent of the
development of V affected by a coefficient other than 0 or 1 can be separately
equated to 0.31

With all this, Boole is finally ready to provide the required general method of
interpretation. Given an equation, we can solve for one of its symbols in terms of
the others to obtain an equation of the above form w = V , and then develop the
second term. All the constituents having 1 as coefficients are to be kept; all those
with a coefficient 0 should be discarded. If non-dual coefficients appear, either
they are of the form 0

0 , in which case the value is “indeterminate” (borrowing
from the arithmetical meaning of this expression) and hence we should replace it

31Interestingly, Boole remarks that the first of those two results can lead to 1 = 0, which he
interprets as the “nonexistence of the logical Universe”, and indicate the attempt “to unite
contradictory Propositions in a single equation” (Boole, 2009, p. 65).
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with an arbitrary elective symbol v. Any other numerical coefficient (including
1
0 ) indicates that the corresponding constituent should be separately equated to
0, this latter condition expressing a “denial of existence” of the corresponding
class (Boole, 2009, p. 77).

To briefly illustrate Boole’s method, take for instance the equation
wy + y = x. Solving for w, we obtain w = x−y

y , whose second term we have al-

ready developed in (13). Applying Boole’s method of interpretation, we obtain
in the end the system:

w = v(1 − x)(1 − y)

x(1 − y) = 0

(1 − x)y = 0

which is fully interpretable in logical terms as meaning that w is composed of
an indefinite part v of elements that are neither x nor y and that, furthermore,
elements that are x and not y as well as elements that are y and not x do not
exist under the conditions expressed by the initial equation.

Boole’s solution at this stage is by all means inelegant and uneasily sophisti-
cated. As with the method of development, Boole is here drawing from algebraic
analysis rather freely32 and without much regard to the overall consistency of
his system. The introduction of dual algebra in LT offered an opportunity to
reflect in terms of a new systematicity but apart from some unconvincing ef-
forts33 the essential components of the interpretation procedure, as well as its
formal grounds, ultimately remained unchanged.

Manifestly unsatisfied with this circumstance, Boole had occasion to return
to the question of interpretability in the 1856 manuscript which contains the
table devices that motivate the present pages.34 In the first pages of this text,
Boole refers to “the imperfect mode in which [the Mathematical Theory of Logic]
has been presented as a philosophical system in the Laws of Thought.” (Grattan-
Guiness and Bornet, 1997, p. 64). Once his new account was exhibited based on
a fresh use of dual Algebra, he expounded on the reasons for that imperfection:

The identity of the formal laws of operation [of Logic represented by
Symbols and of dual Algebra] was demonstrated [in LT] but not the
fact that the formal conditions of interpretability are the same also
and that these conditions are a necessary consequence of the formal
laws. (Grattan-Guiness and Bornet, 1997, p. 94)

Boole is here referring directly to the new approach his table devices present.
It is not about the truth conditions of propositions, then, but about the formal

32Boole explicitly associates the whole procedure with that of solving linear differential
equations, “arbitrary elective symbols in the one, occupying the place of arbitrary constants
in the other” (Boole, 2009, p.70).

33For instance, Boole tried to confer a logical signification on the uncomfortable symbols 0
0

and 1
0
, much like in the case of 0 and 1, by associating them with indefiniteness and infinity

(Boole, 1854, pp. 90–91). In the manuscripts he will also refer—no less unconvincingly—to
the four coefficients in terms of “logical categories”, now considering 1

0
to be the symbol of

impossibility (Grattan-Guiness and Bornet, 1997, pp. 99–100).
34The text, entitled “On the Foundations of the Mathematical Theory of Logic and on

the Philosophical Interpretation of Its Methods and Processes” (Grattan-Guiness and Bornet,
1997, pp. 63–104), provides a complete overview of his system, insisting on its foundational
aspects. It was intended as a preliminary philosophical introduction to the system for the
purpose of an application of the theory of probabilities.
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conditions of interpretability of expressions, determined by dual algebra as a
non-logical domain. Boole’s idea is relatively simple. It consists in extending
the fundamental law of logic x2 = x from individual symbols to any expression,
that is, to any combination resulting from the composition of those symbols.
Thus, if V represents “any combination of symbols”, the formal condition of
logical interpretability (i.e., the formal condition for such an expression to be
a logical expression) is given by the form V V = V . Unlike previous uses of
this form in his work35, Boole’s strategy in this manuscript is to derive from
it particular conditions of interpretability for every possible law of composition
of logical symbols at their syntactical level (i.e. addition, multiplication, etc.).
The idea looks so simple that one might wonder why Boole did not come up
with it before. The answer is certainly to be found in the absence of division
from the primitive operations in the previous versions of his calculus. Despite
that absence, the presence of division in symbolic expressions is pervasive as
a consequence of applying the inverse of multiplication in the symbolical ma-
nipulations. The method of interpretation was thus forced to deal with it and
with its regrettable effects for the coefficients of the expansion (i.e. 0

0 and 1
0 ),

without being able to tackle the problem at its root.36 The 1856 manuscript,
in contrast, introduces division at the same primitive level as the formal opera-
tions of addition, subtraction and multiplication (Grattan-Guiness and Bornet,
1997, p. 79 sqq.). Expressions do not become more interpretable for that rea-
son, but the treatment of interpretability in general can now benefit from a new
systematicity.

Thus, given the logical symbols x and y (satisfying the law x2 = x), there
are altogether four and only four ways in which expressions can be combined to
form new expressions: xy, x + y, x− y, x

y . Apart from multiplication, which is
unconditionally interpretable, all of them are subject to interpretability condi-
tions, since they can lead to uninterpretable expressions. In the previous pages
of the manuscript, Boole had already derived those conditions conceptually,
so to speak, as properties of the operations of conception they are supposed
to express (composition, addition, subtraction and abstraction). The general
condition V V = V henceforth also allows for their formal derivation.

Let us take, for instance, subtraction, as a way of combining the logical
symbols x and y to obtain the expression x − y. Then, following the general
condition V V = V , such an expression will be logically interpretable if and only
if

(x− y)(x− y) = x− y

which can, in turn be transformed by symbolical manipulations in the following

35The presence of this condition can be traced back to MAL, recognizable under the form
{ϕ(xy . . .)}n = ϕ(xy . . .), which Boole presents as a condition introducing “symmetry into our
Calculus” (Boole, 2009, p. 66). In LT, Boole acknowledges it, under the form V (1− V ) = 0,
as “the condition of interpretability of logical functions”, and devotes a whole chapter to
exploring some of its properties (Boole, 1854, p. 93 and ch. X). In those pages, such a condition
inspired, however, a rather convoluted method for reducing every step of a calculation to an
interpretable form.

36For the problem of division in Boole, see Hailperin (1986).
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form:

x− xy − yx + y = x− y

y − xy + y − yx = 0

y(1 − x) + y(1 − x) = 0

This results in the last expression only being able to be satisfied if y(1−x) =
0. Thus, y(1−x) = 0 appears as the ultimate condition of logical interpretabil-
ity for expressions that combine logically interpretable symbols by means of
subtraction. Setting aside multiplication, a derivation analogous to the one
just given37 yields the following respective conditions of interpretability for the
remaining three compound expressions: xy = 0, y(1 − x) = 0, x(1 − y) = 0.

Although in equational form, those three expressions do not primarily repre-
sent logical propositions. They are particular formal conditions corresponding
to the compositional laws of expressions by which a logical proposition might be
represented. One could think of them as expressions of second order or degree,
in the sense that they refer to other expressions and control the dynamics of
their syntax with respect to their (propositional) meaning.

Strictly speaking, such expressions only render explicit the conditions of
that control. It is their evaluation at the values of dual algebra that will finally
furnish the actual conditions of satisfaction allowing us to draw the line between
interpretable and non-interpretable cases of the initial compound expressions.
Thus, in the case of subtraction, the condition expressed by the equation y(1−
x) = 0 is satisfied only for all the possible combinations of 1 and 0 except
when x = 0 and y = 1, meaning that any expression involving subtraction
will require, in such a case, going through non-interpretable expressions in the
process of deduction, since in x − y will then give the value −1 “which is not
included in [the dual] system” (Grattan-Guiness and Bornet, 1997, p. 93). The
complete formal determination of those conditions of interpretability by dual
algebra is, of course, what Boole’s table devices provide.

Let us illustrate Boole’s new method with the example y−x+ z
y . Following

Boole’s tables, the subtraction y−x excludes the combination x = 1 and y = 0;
the quotient z

y excludes y = 0 and z = 1; and the addition of those two terms
excludes y − x = 1 and z

y = 1. If from all possible combinations of dual values
for x, y and z, we exclude those that satisfy such conditions, we have that the
following combinations are selected:

x = 1 y = 1 z = 1
x = 1 y = 1 z = 0
x = 0 y = 1 z = 0
x = 0 y = 0 z = 0

and these others are excluded:

x = 1 y = 0 z = 1
x = 1 y = 0 z = 0
x = 0 y = 1 z = 1
x = 0 y = 0 z = 1

37In the paragraphs preceding his presentation of the tables, Boole explicitly provides the
derivation of condition for the additive expression (Grattan-Guiness and Bornet, 1997, p. 92).
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It follows that when used to evaluate the initial expression y − x + z
y , the

selected combinations yield only interpretable coefficients: 1, 0, 1 and 0
0 , while

the others produce non-interpretable coefficients: 1
0 , 00 , 2, 1

0 . One will notice that
the coefficient 0

0 (which Boole continues to consider as interpretable, having a
value of either 0 or 1) is present in both groups. Yet while in the first case all
the intermediate steps by which this coefficient is obtained are interpretable, in
the second this is not the case (we have, namely, that y − x = −1).

We can finally positively assess the singular systematicity of Boole’s ta-
ble devices. If we recall the triple lack of systematicity they presented in the
anachronistic light of propositional calculus, we can now see that Boole’s ta-
bles are perfectly systematic in the choice of the expressions they represent,
in the compositional analysis they guarantee, and in the kind of functionality
they implement. However, such a fragile systematicity is only revealed once
we understand that Boole’s conception of a formal logical system is less deter-
mined by the truth conditions of logical propositions than by the interpretability
conditions of expressions.

From this alternative perspective, the expressions xy = 0, y(1 − x) = 0,
x(1 − y) = 0 appear then as exhaustively covering the conditions of inter-
pretability of Boole’s symbolic expressions by which logical propositions could
be represented. Furthermore, the conditions their respective tables express in-
volve a deep conception of the compositional structure of expressions, not bor-
rowed from two-valued logical propositions or any other semantic domain, but
resulting from a complex relation between expressions only. Indeed, Boole’s new
approach supplements the compositional form of expressions given by their de-
velopment, with a second principle based on the simple syntactical composition.
As a result, the internal structure of expressions is ultimately determined by the
connection between a principle of decomposition into normal form and a prin-
ciple of composition through symbolical operations, whose relation to meaning
is controlled by other expressions of a necessarily different order (e.g. the com-
positional structure of the expression x− y is determined both by its developed
normal form and the subtractive combination of x and y, and the interpretabil-
ity at the crossroads of both is controlled by the expression y(1 − x) = 0).
Finally, if unlike truth-table devices, Boole’s tables show a difference between
the domain and the codomain of the functions they translate, we can now see
that such a discrepancy constitutes a positive instrument for drawing the line
between interpretable and non-interpretable expressions (e.g. as “not included
in [the dual] system”, −1 becomes the positive mark of the non-interpretability
of x− y when x = 0 and y = 1).

Concluding remarks

One could object that there is strictly no merit in looking for something where
it is known not to be and being proud of not finding it. However, it is not
exactly in the familiar sense that truth tables are absent from Boole’s work.
If we follow the usual characterization of truth tables in the history of logic
(both as a technique and as a device), it can be reasonably claimed that such
tables are indeed there. However, although this circumstance may be of some
interest given the existing literature on the history of truth tables, what is more
surprising is that, whilst Boole’s table devices possess everything required to
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be considered in such a way, they cannot be understood as truth-table devices.
Their study thus becomes relevant in assessing those disregarded dimensions
of Boole’s own work and restoring with them lost insights associated with the
emergence of the mathematization of logic.

I have shown that, considered from the perspective of their internal neces-
sity within his entire work, Boole’s table devices present an image of formal
logic that does not necessarily coincide with that stemming from the modern
propositional calculus invariably attributed to the English logician. In partic-
ular, Boole’s conception of a calculus of logic is not primarily concerned with
the truth conditions of logical propositions, but with the meaning conditions of
symbolic expressions. My attempt to understand the multiple systematic dimen-
sions attached to this problem has revealed the originality of Boole’s singular
system, in particular with respect to the articulation between a formal language
and a deductive calculus. To this end, I have reconstructed his complex un-
derstanding of the compositional structure of symbolic expressions, examined
the genesis of tabular devices associated with their computational properties,
and uncovered a conception of the dual terms 0 and 1 as symbolic devices not
yet captured by the logical significations of truth and falsehood. Finally, I have
shown how each of those aspects of Boole’s thought concurred in proposing a
novel device which only on the surface might look familiar to our modern eyes.

The multiple hesitations, mistakes and inconsistencies of Boole’s formulation
can be taken as read. The lack of rigor does not, however, exhaust what a work
such as Boole’s has to offer. Thus in closing I cannot but endorse Boole’s words
in his immediate assessment of his new method (Grattan-Guiness and Bornet,
1997, p. 94):

I apprehend that the identity of the systems [of Logic and Dual
Algebra] as respects not only the formal laws of operation but also
the formal conditions of interpretability is a fact of great moment
and significance and that it would be unphilosophical to regard it as
a merely accidental coincidence.
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Béatrice Godart-Wendling. The Conceptualization of Time in Boole’s Algebraic
Logic, pages 241–255. Springer Netherlands, Dordrecht, 2000. ISBN 978-94-
015-9385-4. doi: 10.1007/978-94-015-9385-4 13. URL https://doi.org/10.

1007/978-94-015-9385-4_13.

I. Grattan-Guiness and G. Bornet, editors. George Boole: Selected Manuscripts
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